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Stableness

Definition 1.1

e Loss function L : |

— R, parameter x € | D learning rate (LR) 7 > 0.

e Stableness:

S;(x,n) :==n- sup 4, (VzL (x — SVL(x)))
s€[0,71]

o LRX(supremum of sharpness at a point after a step of gradient descent (GD))

» L is stable at (x, n) iff §;(x,n7) < 2; otherwise, we say L is unstable at (x, 7).

SL(X, }7)
"

. Note: L is ( )—smooth on a line segment between x and x — 1V L(x)



Problem setting: Algorithms

1. Normalized GDon L: Xx,,; = X, — I — V L(x,)

IV L)

2. GDon\/L —\/L.: x.,=x —nVy/L(x)

yO _ _
(a) GD on VI (b) Normalized GD on L



Contribution

Two-phase dynamics of GD variants with small LR 7 GD,,,K

hase |
T1 = (”)(”I_l)

GD, phase Il
T, = ©(n~?)

Limiting
Flow

e Phase |

I'": manifold of zero-loss solution
 Starting from a neighborhood of the manifold I " of the minimizers of the loss,

« GD tracks a gradient flow (GF) governed by L (monotone decrease in L).

» GD gets O(n7)-close to the manifold I .
 Phase 2

o (slightly perturbed) GD tracks another flow on 1" which decreases the loss sharpness

» Unstable: stableness at least in one step of every two consecutive steps is > 2

* The loss non-monotonically decreases (proportionally to the loss sharpness)



Warm-up: Quadratic Loss

L(x) = %XTAX where A is PSD

. q,
« Normalized GDon L: x.,{ = x, — Ax
+1 { 1A t

. GDonﬁ: X1 =X, — _Ax,

\/ 2xT Ax,

. IfwesetXx, = %sz for Normalized GD and x, = %(ZA)l/zxt for GD on \/Z

both X,’s satisfy the same update rule




Warm-up: Quadratic Loss

x, oscillates & aligns to *v,

. Consider A € R”*” with eigenvalues 4; > 4, > -+ > 1, > 0and vy, -+, vpy
are the corresponding eigenvectors.

. Theorem 3.1. If |(v1,52t)| # 0 fort > 0,then 4C € (0,1)and ds € {1}
such that lim X,, = CsA;v; and lim X,,,; = — (1 — C)s4,v;.

[— 00 [— 00

» The angle 0, between X, and v, converges to 0 (“alignment”), while the
direction of X, flips back and forth near the minima.



Key definitions (1)

Gradient flow (GF), its limiting map, & attraction set of I

. GF on L can be described through a mapping ¢ : R” X [0,00) — R” s.t.

[

D(x,1) = X — J VL(p(x,s))ds

0
. Satisfies ¢(x,0) =x, 0,¢p(x,t) = =V L(¢(x,1))

. The limiting map @ : R? — R? of GF: ®(x) = lim ¢(x, 7)

[— 00

o Attraction set U of I : an open neighborhood of I 's.t. forallx € U, ®(x) € I’



Key Definitions (2)

transformed iterate x, (motivated by quadratic case)

. V2L(D(x))(x — ®(x)) for Normalized GD on L
A= 5 1/2
(2VZL(@(x))) (x — ®(x)) for GDony/L
.0 € O,%] : angle between X, & top eigenspace of VZL(CI)(xt))

M
. Rj(x) — \ Z (vi(x),)Z)z —/Ij(x)n, forj € | D]
i=j

« M = rank(V2L(x)) forall x € " (sothat I"is a (D — M)-dimensional manifold)

e {(4i(x), vl-(x))}?= .: eigenvalue-eigenvector pairs of V2L(D(x)) A >4, = 2> Ap)

 length of the projection of X onto the bottom-(D — j) eigenspace of V?L(®(x))



Results for Normalized GD (1) K s

Phase | T, = O(n™ Y Limiting

Flow

I': manifold of zero-loss solution

» Theorem 4.3. Let xy; = x; ;. € U. Then, there is a constant 7| > 0 such that for
any 17 > T and a sufficiently small LR # > 0, the following holds:

(1)  max |lx— @y | <00
t€|T\/n, T;/n)|

(2) max  Rix) < O@?)
t€|T,/n, T;/n|, jE[D]



Results for Normalized GD (2) K 1,0
Phase |l T, = O™ Limiting

Flow
I': manifold of zero-loss solution

. Restart the algorithm from the end of Phase I: x, = x 13¢! (+ > T, /n)

Assume that || Xo — D(x;50) || < O(n) and ]Ig[ell))iR(xO) < O(n?) hold for Xo-

» + Assume that the initial alignment of X, and v,(x,) is not too small. (formal description is omitted)

» x, will eventually track the following Riemannian gradient flow on | -

T

1
Limiting Flow: X(7) = O(x; ;) — Z[ P)%(S)FVlog AL(X(s))ds, X(zr)el
0

. ler : T — RP : projection operator onto the tangent space of I" at x

» The sharpness 4;(X(7)) decreases!



Results for Normalized GD (3) k 7= 00
Phase |l T, = O™ Limiting

Flow
I': manifold of zero-loss solution

» To make the theoretical analysis feasible, the alignment between X, and v,(x,) should not vanish.

- To this end, we add a (uniform) noise of magnitude O(1'"") occasionally.

« Theorem 4.4. For any constant time 7, > 0 till which the solution of the “limiting flow” X exists,

for sufficiently small 7 > 0, with probability at least 1 — O('"), the iterates of perturbed
Normalized GD satisfies that

) || @ () = XT || = 00

1 | T/ 2J

(2) 0, < O(n)
[ T2/n7] g t




Results for Normalized GD (4)

Phase |l & Edge of Stability: High stableness, non-monotonic decrease of loss

* Theorem 4.7. Under the setting of Phase Il, by viewing Normalized GD as GD with time-

varying LR 7, = HV:(xt)H , we have

1 1
(1) + =14+ 00, + n)
Si(Xn 1) Sp(Xpp15 Mg 1) t

« Stableness 2 2 at least in one of every two consecutive steps.

A (V?L
(2) \/L()Ct) + \/L('XH—I) — 77\ 1( 2 (Xt)) + @(7]@)

* Loss (non-monotonically) decreases as the loss sharpness decreases via limiting flow.



Results for GD on /L

Phase |l & Edge of Stability: High stableness, non-monotonic decrease of loss

« Theorem 4.8. Under the setting of Phase |lI, Running GD on ﬁ we eventually
have

1
(1) SL(Xt, nz) Z Q DN
0,

o Stableness is large.

(2) \/ L()Ct) + \/ L(xt+1) — 7]/11( VzL(Xt)) + @(77@)

* Loss (hon-monotonically) decreases as the loss sharpness decreases via limiting flow.



Discussion

» Different setting from Cohen et al. [2021]
* Discrepancy in algorithms.

 The sharpness should decrease to near zero to ensure the convergence in loss

e Although the analysis allows some non-smoothness in loss (\/Z case), the manifold I of
minimizers must be smooth enough (“CZ-submanifold of R%”)

e Locality of the analysis
* The analysis only applies when the initialization is close enough to 1"

* Non-vanishing but small learning rate #



