Al709 Presentation: **Understanding Gradient Descent on Edge of Stability in Deep Learning** Sanjeev Arora, Zhiyuan Li, Abhishek Panigrahi ICML 2022

Speaker: Hanseul Cho

Stableness Definition 1.1

- Loss function $L : \mathbb{R}^D \to \mathbb{R}$, parameter $x \in \mathbb{R}^D$, learning rate (LR) $\eta > 0$.
- Stableness:

$$S_L(x,\eta) := \eta \cdot \sup_{s \in [0,\eta]} \lambda_1 \left(\nabla^2 L \left(x - s \nabla L(x) \right) \right)$$

• Note: L is $\left(\frac{S_L(x,\eta)}{n}\right)$ -smooth on a line segment between x and $x - \eta \nabla L(x)$

 LRX(supremum of sharpness at a point after a step of gradient descent (GD)) • L is stable at (x, η) iff $S_L(x, \eta) \le 2$; otherwise, we say L is unstable at (x, η) .

Problem setting: Algorithms

- 2. GD on $\sqrt{L} \sqrt{L_{\min}}$: $x_{t+1} = x_t \eta \nabla \sqrt{L}(x_t)$ +noise?

Contribution Two-phase dynamics of GD variants with small LR η

- Phase I
 - Starting from a neighborhood of the manifold Γ of the minimizers of the loss,
 - GD tracks a gradient flow (GF) governed by L (monotone decrease in L).
 - GD gets $\mathcal{O}(\eta)$ -close to the manifold Γ .
- Phase 2
 - (slightly perturbed) GD tracks another flow on Γ which decreases the loss sharpness
 - Unstable: stableness at least in one step of every two consecutive steps is > 2
 - The loss non-monotonically decreases (proportionally to the loss sharpness)

Warm-up: Quadratic Loss $L(x) = \frac{1}{2}x^{T}Ax$ where A is PSD

• Normalized GD on *L*: $x_{t+1} = x_t - \frac{\eta}{\|Ax_t\|} Ax_t$ • GD on \sqrt{L} : $x_{t+1} = x_t - \frac{\eta}{\sqrt{2x_t^T A x_t}} A x_t$

• If we set $\tilde{x}_t = \frac{1}{n}Ax_t$ for Normalized GD and $\tilde{x}_t = \frac{1}{n}(2A)^{1/2}x_t$ for GD on \sqrt{L} , both \tilde{x}_{t} 's satisfy the same update rule

$$\tilde{x}_t - A \frac{\tilde{x}_t}{\|\tilde{x}_t\|}.$$

Warm-up: Quadratic Loss \tilde{x}_t oscillates & aligns to $\pm v_1$

- Consider $A \in \mathbb{R}^{D \times D}$ with eigenvalues $\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_D > 0$ and v_1, \cdots, v_D are the corresponding eigenvectors.
- Theorem 3.1. If $|\langle v_1, \tilde{x}_t \rangle| \neq 0$ for $t \ge 0$, then $\exists C \in (0,1)$ and $\exists s \in \{\pm 1\}$ such that $\lim_{t \to \infty} \tilde{x}_{2t} = Cs\lambda_1 v_1$ and $\lim_{t \to \infty} \tilde{x}_{2t+1} = -(1-C)s\lambda_1 v_1$.
- The angle θ_t between \tilde{x}_t and v_1 converges to 0 ("alignment"), while the direction of \tilde{x}_{t} flips back and forth near the minima.

Key definitions (1) Gradient flow (GF), its limiting map, & attraction set of Γ

- GF on *L* can be described through a mapping $\phi : \mathbb{R}^D \times [0,\infty) \to \mathbb{R}^D$ s.t.
 - $\phi(x,t) = x$
 - Satisfies $\phi(x,0) = x$, $\partial_t \phi(x,t) =$
- The limiting map $\Phi : \mathbb{R}^D \to \mathbb{R}^D$ of GF: $\Phi(x) = \lim_{t \to \infty} \phi(x, t)$
- Attraction set U of Γ : an open neighborhood of Γ s.t. for all $x \in U$, $\Phi(x) \in \Gamma$

$$-\int_0^t \nabla L(\phi(x,s)) \mathrm{d}s$$

$$= -\nabla L(\phi(x,t))$$

Key Definitions (2) transformed iterate \tilde{x}_t (motivated by quadratic case)

 $\tilde{x} = \begin{cases} \nabla^2 L(\Phi(x))(x - \Phi(x)) & \text{for Normalized GD on } L \\ \left(2\nabla^2 L(\Phi(x))\right)^{1/2}(x - \Phi(x)) & \text{for GD on } \sqrt{L} \end{cases}$ • $\theta_t \in \left[0, \frac{\pi}{2}\right]$: angle between \tilde{x}_t & top eigenspace of $\nabla^2 L(\Phi(x_t))$ $R_{j}(x) := \sqrt{\sum_{i=i}^{M} \langle v_{i}(x), \tilde{x} \rangle^{2} - \lambda_{j}(x)\eta}, \text{ for } j \in [D]$

- $M = \operatorname{rank}(\nabla^2 L(x))$ for all $x \in \Gamma$ (so that Γ is a (D M)-dimensional manifold)
- $\{(\lambda_i(x), v_i(x))\}_{i=1}^D$: eigenvalue-eigenvector pairs of $\nabla^2 L(\Phi(x))$ $(\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_D)$

• the first square root term: length of the projection of \tilde{x} onto the bottom-(D - j) eigenspace of $\nabla^2 L(\Phi(x))$

Results for Normalized GD (1) Phase I

• Theorem 4.3. Let $x_0 = x_{init} \in U$. Then, there is a constant $T_1 > 0$ such that for any $T'_1 > T_1$ and a sufficiently small LR $\eta > 0$, the following holds:

(1)
$$\max_{t \in [T_1/\eta, T_1'/\eta]} \| x_t - \Phi(x_{\text{init}}) \| \le t$$

- (iterates track the GF & get $\mathcal{O}(\eta)$ -close to the minimizer manifold Γ)
- (2) $\max_{t \in [T_1/\eta, T_1'/\eta], j \in [D]} R_j(x_t) \le \mathcal{O}(\eta^2)$

 $[\]Gamma$: manifold of zero-loss solution

 $\leq \mathcal{O}(\eta)$

• (projected length of \tilde{x}_t onto eigenspace of $\nabla^2 L(\Phi(x_t))$ is not too large)

Results for Normalized GD (2) Phase II

- Restart the algorithm from the end of Phase I: $x_0 = x_t^{\text{Phase I}}$ $(t \ge T_1/\eta)$
- Assume that $\|x_0 \Phi(x_{\text{init}})\| \le \mathcal{O}(\eta)$ and $\max_{j \in [D]} R_j(x_0) \le \mathcal{O}(\eta^2)$ hold for x_0 .
- + Assume that the initial alignment of \tilde{x}_0 and $v_1(x_0)$ is not too small. (formal description is omitted)
- x_t will eventually track the following Riemannian gradient flow on Γ :

Limiting Flow:
$$X(\tau) = \Phi(x_{\text{init}}) - \frac{1}{4} \int_0^{\tau} P_{X(s),\Gamma}^{\perp} \nabla \log \lambda_1(X(s)) ds, \quad X(\tau) \in \Gamma$$

- $P_{x,\Gamma}^{\perp}: \Gamma \to \mathbb{R}^D$: projection operator onto the tangent space of Γ at x
- The sharpness $\lambda_1(X(\tau))$ decreases!

 Γ : manifold of zero-loss solution

Results for Normalized GD (3) Phase II

- To this end, we add a (uniform) noise of magnitude $\mathcal{O}(\eta^{100})$ occasionally.
- Normalized GD satisfies that

(1)
$$\left\| \Phi\left(x_{\lfloor T_2/\eta^2 \rfloor}\right) - X(T_2) \right\| = \mathcal{O}(\eta), \quad (1)$$
(2)
$$\frac{1}{\lfloor T_2/\eta^2 \rfloor} \sum_{t=0}^{\lfloor T_2/\eta^2 \rfloor} \theta_t \le \mathcal{O}(\eta) \quad \text{(alignment in the set of the se$$

 $[\]Gamma$: manifold of zero-loss solution

• To make the theoretical analysis feasible, the alignment between \tilde{x}_t and $v_1(x_t)$ should not vanish.

• Theorem 4.4. For any constant time $T_2 > 0$ till which the solution of the "limiting flow" X exists, for sufficiently small $\eta > 0$, with probability at least $1 - \mathcal{O}(\eta^{10})$, the iterates of <u>perturbed</u>

(tracking the limiting flow)

in average)

Results for Normalized GD (4) Phase II \rightarrow Edge of Stability: High stableness, non-monotonic decrease of loss

• **Theorem 4.7.** Under the setting of Phase II, by viewing Normalized GD as GD with time-varying LR $\eta_t = \frac{\eta}{\|\nabla L(x_t)\|}$, we have

(1)
$$\frac{1}{S_L(x_t, \eta_t)} + \frac{1}{S_L(x_{t+1}, \eta_{t+1})} = 1 + \mathcal{O}$$

• Stableness $\gtrsim 2$ at least in one of every two consecutive steps.

(2)
$$\sqrt{L(x_t)} + \sqrt{L(x_{t+1})} = \eta \sqrt{\frac{\lambda_1(\nabla^2 L(x_t))}{2}} + \mathcal{O}(\eta \theta_t)$$

 $\hat{\theta}(\theta_t + \eta)$

Loss (non-monotonically) decreases as the loss sharpness decreases via limiting flow.

Results for GD on \sqrt{L} Phase II \rightarrow Edge of Stability: High stableness, non-monotonic decrease of loss

have

(1)
$$S_L(x_t, \eta_t) \ge \Omega\left(\frac{1}{\theta_t}\right)$$

• Stableness is large.

(2)
$$\sqrt{L(x_t)} + \sqrt{L(x_{t+1})} = \eta \lambda_1 (\nabla^2 L)$$

• **Theorem 4.8.** Under the setting of Phase II, Running GD on \sqrt{L} , we eventually

$(X_t)) + O(\eta \theta_t)$

• Loss (non-monotonically) decreases as the loss sharpness decreases via limiting flow.

Discussion

- Different setting from Cohen et al. [2021]
 - Discrepancy in algorithms.
 - The sharpness should decrease to near zero to ensure the convergence in loss (\leftrightarrow the sharpness hovers around $2/\eta$ [Cohen et al., 2021])
 - Although the analysis allows some non-smoothness in loss (\sqrt{L} case), the manifold Γ of minimizers must be smooth enough (" C^2 -submanifold of \mathbb{R}^{d} ")
- Locality of the analysis
 - The analysis only applies when the initialization is close enough to Γ
- Non-vanishing but small learning rate η