Speaker: Hanseul Cho

AI709 Presentation: Understanding Gradient Descent on Edge of Stability in Deep Learning Sanjeev Arora, Zhiyuan Li, Abhishek Panigrahi ICML 2022

Stableness Definition 1.1

-
- *Stableness*:

• Note: L is $\left(\frac{2L(x,y,y)}{\eta}\right)$ -smooth on a line segment between x and *. SL*(*x*, *η*)

• Loss function $L: \mathbb{R}^D \to \mathbb{R}$, parameter $x \in \mathbb{R}^D$, learning rate (LR) $\eta > 0$.

• LRX(supremum of sharpness at a point after a step of gradient descent (GD)) • L is *stable* at (x, η) iff $S_L(x, \eta) \leq 2$; otherwise, we say L is <u>unstable</u> at (x, η) .

 $\frac{m}{\eta}$)-smooth on a line segment between x and $x - \eta \nabla L(x)$

$$
S_L(x, \eta) := \eta \cdot \sup_{s \in [0, \eta]} \lambda_1 \left(\nabla^2 L \left(x - s \nabla L(x) \right) \right)
$$

-
-

Problem setting: Algorithms

- 1. Normalized GD on L : *L* $x_{t+1} = x_t - \frac{\eta}{\|\nabla f\|}$
- 2. GD on $\sqrt{L} \sqrt{L_{\text{min}}}:$ $x_{t+1} = x_t \eta \nabla \sqrt{L(x_t)}$ +noise?

 $\|\nabla L(x_t)\|$ $\nabla L(x_t)$ +noise?

Contribution Two-phase dynamics of GD variants with small LR *η*

- Phase I
	- Starting from a neighborhood of the manifold Γ of the minimizers of the loss,
	- GD tracks a gradient flow (GF) governed by L (monotone decrease in L).
	- GD gets $\mathcal{O}(\eta)$ -close to the manifold Γ .
- Phase 2
	- (slightly perturbed) GD tracks another flow on Γ which decreases the loss sharpness
	- Unstable: stableness at least in one step of every two consecutive steps is > 2
	- The loss non-monotonically decreases (proportionally to the loss sharpness)

Warm-up: Quadratic Loss $L(x) = \frac{1}{2}x^{\top}Ax$ where *A* is PSD

• Normalized GD on *L*: $x_{t+1} = x_t - \frac{\eta}{\|A_t\|}$ **•** GD on \sqrt{L} : *L* $x_{t+1} = x_t - \frac{\eta}{\sqrt{2\pi}}$ $2x_t^\mathsf{T} A x_t$ Ax_t

• If we set $\tilde{x}_t = \frac{1}{n}Ax_t$ for Normalized GD and $\tilde{x}_t = \frac{1}{n}(2A)^{1/2}x_t$ for GD on \sqrt{L} , both $\tilde{x}^{\, \prime}_t$'s satisfy the same update rule 1 *η* Ax_t for Normalized GD and $\tilde{x}_t =$ 1 *^η* (2*A*) $1/2$ _{*x*t} for GD on \sqrt{L} *t*

$$
\tilde{x}_t - A \frac{\tilde{x}_t}{\|\tilde{x}_t\|}.
$$

- $\frac{d}{\|Ax_t\|}Ax_t$
-

Warm-up: Quadratic Loss \tilde{x}_t oscillates & aligns to $\pm v_1$

- Consider $A \in \mathbb{R}^{D \times D}$ with eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_D > 0$ and are the corresponding eigenvectors. $A \in \mathbb{R}^{D \times D}$ with eigenvalues $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_D > 0$ and v_1, v_2 ⋯ , *vD*
- Theorem 3.1. If $|\langle v_1, \tilde{x}_t \rangle| \neq 0$ for $t \geq 0$, then $\exists C \in (0,1)$ and such that $\lim \tilde x_{2t} = C s \lambda_1 \nu_1$ and $\lim \tilde x_{2t+1} = -(1-C) s \lambda_1 \nu_1.$ *t* $\langle \rangle \mid \neq 0$ for $t \geq 0$, then $\exists C \in (0,1)$ and $\exists s \in \{\pm 1\}$ *t*→∞ $\tilde{x}_{2t} = Cs\lambda_1 v_1$ and $\lim_{t \to \infty}$ *t*→∞ $\tilde{x}_{2t+1} = -(1 - C)s\lambda_1 v_1$
- The angle θ_t between \tilde{x}_t and v_1 converges to 0 ("alignment"), while the direction of $\tilde{x}^{}_{t}$ flips back and forth near the minima. *t*

Key definitions (1) Gradient flow (GF), its limiting map, & attraction set of Γ

- GF on L can be described through a mapping $\phi: \mathbb{R}^D \times [0,\infty) \to \mathbb{R}^D$ s.t.
	- $\phi(x, t) = x -$
	- Satisfies $\phi(x,0) = x$, $\partial_t \phi(x,t) = -\nabla L(\phi(x,t))$
- The **limiting map** $\Phi : \mathbb{R}^D \to \mathbb{R}^D$ of GF: $\Phi: \mathbb{R}^D \to \mathbb{R}^D$ of GF: $\Phi(x) = \lim \phi(x, t)$ *t*→∞
- Attraction set U of Γ : an open neighborhood of Γ s.t. for all $x\in U,$ $\Phi(x)\in \Gamma$

$$
\int_0^t \nabla L(\phi(x,s)) \, ds
$$

$$
= -\nabla L(\phi(x,t))
$$

Key Definitions (2) transformed iterate *x* ˜ **(motivated by quadratic case)** *^t*

 $\tilde{x} = \left\{$ • $\theta_t \in \left[0, \frac{1}{2}\right]$: angle between \tilde{x}_t & top eigenspace of • $R_j(x) := \sum_{i} \langle v_i(x), \tilde{x} \rangle^2 - \lambda_j(x)\eta$, for $\nabla^2 L(\Phi(x))(x - \Phi(x))$ for Normalized GD on *L* $(2\nabla^2L(\Phi(x)))$ 1/2 $(x - \Phi(x))$ for GD on \sqrt{L} *π* $\left[\frac{x}{2}\right]$: angle between \tilde{x}_t & top eigenspace of $\nabla^2 L(\Phi(x_t))$ *M* ∑ $\langle v_i(x), \tilde{x} \rangle^2 - \lambda_j(x)\eta$, for $j \in [D]$

• $M = \text{rank}(\nabla^2 L(x))$ for all $x \in \Gamma$ (so that Γ is a $(D - M)$ -dimensional manifold)

i=*j*

- $\{(\lambda_i(x), v_i(x))\}_{i=1}^D$: eigenvalue-eigenvector pairs of $\nabla^2 L(\Phi(x))$ $(\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_D)$
-
-
-
-

• the first square root term: length of the projection of \tilde{x} onto the bottom- $(D-j)$ eigenspace of $\nabla^2 L(\Phi(x))$

Results for Normalized GD (1) Phase I

• **Theorem 4.3.** Let $x_0 = x_{\text{init}} \in U$. Then, there is a constant $T_1 > 0$ such that for any $T_1' > T_1$ and a sufficiently small LR $\eta > 0$, the following holds:

• (projected length of \tilde{x}_t onto eigenspace of $\nabla^2 L(\Phi(x_t))$ is not too large) t_t onto eigenspace of $\nabla^2 L(\Phi(x_t))$))

$$
\textbf{(1)} \quad \max_{t \in [T_1/n, T_1'/\eta]} \quad \left\| \ x_t - \Phi(x_{\text{init}}) \ \right\| \ \leq \mathcal{O}(\eta)
$$

- (iterates track the GF & get $\mathcal{O}(\eta)$ -close to the minimizer manifold Γ)
- **(2)** max $R_i(x_t) \leq O(\eta^2)$ *t*∈[*T*1/*η*, *T*′ 1/*η*], *j*∈[*D*] $R_j(x_t$ $) \leq O(\eta^2)$
	-

 Γ : manifold of zero-loss solution

Results for Normalized GD (2) Phase II

- Restart the algorithm from the end of Phase I: $x_0 = x_t^{\text{Phase I}}$ ($t \geq T_1/\eta$)
- Assume that $|| x_0 \Phi(x_{\text{init}})|| \leq \mathcal{O}(\eta)$ and $\max_{i \in [D]} R_i(x_0) \leq \mathcal{O}(\eta^2)$ hold for x_0 . *j*∈[*D*] R _{*j*}(x ₀) \leq $\mathcal{O}(\eta^2)$ hold for x_0
- + Assume that the initial alignment of \tilde{x}_0 and $v_1(x_0)$ is not too small. (formal description is omitted)
- x_t will eventually track the following Riemannian gradient flow on Γ :

Limiting Flow:
$$
X(\tau) = \Phi(x_{init}) - \frac{1}{4} \int_0^{\tau} P_{X(s),\Gamma}^{\perp} \nabla \log \lambda_1(X(s)) ds, \quad X(\tau) \in \Gamma
$$

- $P_{x,\Gamma}^{\perp}:\Gamma\to\mathbb{R}^D$: projection operator onto the tangent space of Γ at x
- The sharpness $\lambda_1(X(\tau))$ decreases!

 Γ : manifold of zero-loss solution

Results for Normalized GD (3) Phase II

-
- To this end, we add a (uniform) noise of magnitude $\mathscr{O}(\eta^{100})$ occasionally.
- for sufficiently small $\eta > 0$, with probability at least $1 \mathscr{O}(\eta^{10})$, the iterates of <u>perturbed</u> Normalized GD satisfies that

$$
(1) \quad \left\| \Phi\left(x_{\lfloor T_2/\eta^2\rfloor}\right) - X(T_2) \right\| = O(\eta),
$$
\n
$$
(2) \quad \frac{1}{\lfloor T_2/\eta^2 \rfloor} \sum_{t=0}^{\lfloor T_2/\eta^2 \rfloor} \theta_t \le O(\eta) \quad \text{(alignment i)}
$$

 Γ : manifold of zero-loss solution

• To make the theoretical analysis feasible, the alignment between \tilde{x}_t and $v_1(x_t)$ should not vanish.

• Theorem 4.4. For any constant time $T_2 > 0$ till which the solution of the "limiting flow" X exists,

(tracking the limiting flow)

in average)

Results for Normalized GD (4) Phase II → Edge of Stability: High stableness, non-monotonic decrease of loss

varying LR $\eta_t = \frac{\eta}{\|\nabla L(x_t)\|}$, we have *η* $\|\nabla L(x_t)\|$

• **Theorem 4.7.** Under the setting of Phase II, by viewing Normalized GD as GD with time-

 $\delta(\theta_t + \eta)$

(1)
$$
\frac{1}{S_L(x_t, \eta_t)} + \frac{1}{S_L(x_{t+1}, \eta_{t+1})} = 1 + \mathcal{O}
$$

• Stableness \geq 2 at least in one of every two consecutive steps.

• Loss (non-monotonically) decreases as the loss sharpness decreases via limiting flow.

$$
(2) \sqrt{L(x_t)} + \sqrt{L(x_{t+1})} = \eta \sqrt{\frac{\lambda_1(\nabla^2 L(x_t))}{2}} + \mathcal{O}(\eta \theta_t)
$$

Results for GD on *L* **Phase II → Edge of Stability: High stableness, non-monotonic decrease of loss**

• Theorem 4.8. Under the setting of Phase II, Running GD on \sqrt{L} , we eventually have

• Stableness is large.

$$
(1) S_L(x_t, \eta_t) \ge \Omega\left(\frac{1}{\theta_t}\right)
$$

• Loss (non-monotonically) decreases as the loss sharpness decreases via limiting flow.

$$
(2) \sqrt{L(x_t)} + \sqrt{L(x_{t+1})} = \eta \lambda_1 (\nabla^2 L(x_t))
$$

)) + $\mathcal{O}(\eta \theta_t)$

Discussion

- Different setting from Cohen et al. [2021]
	- Discrepancy in algorithms.
	- The sharpness should decrease to near zero to ensure the convergence in loss \leftrightarrow the sharpness hovers around $2/\eta$ [Cohen et al., 2021])
	- Although the analysis allows some non-smoothness in loss (\sqrt{L} case), the manifold Γ of minimizers must be smooth enough (" C^2 -submanifold of \mathbb{R}^{d} ")
- Locality of the analysis
	- The analysis only applies when the initialization is close enough to Γ
- Non-vanishing but small learning rate *η*