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Stableness
Definition 1.1

• Loss function , parameter , learning rate (LR) .


• Stableness:  





• LR (supremum of sharpness at a point after a step of gradient descent (GD))


•  is stable at  iff ; otherwise, we say  is unstable at .


• Note:  is -smooth on a line segment between  and 

L : ℝD → ℝ x ∈ ℝD η > 0

SL(x, η) := η ⋅ sup
s∈[0,η]

λ1 (∇2L (x − s∇L(x)))
×

L (x, η) SL(x, η) ≤ 2 L (x, η)

L ( SL(x, η)
η ) x x − η∇L(x)



Problem setting: Algorithms

1. Normalized GD on :   


2. GD on :    

L xt+1 = xt −
η

∥∇L(xt)∥
∇L(xt)

L − Lmin xt+1 = xt − η∇ L(xt) +noise?

+noise?



Contribution
Two-phase dynamics of GD variants with small LR η

• Phase I


• Starting from a neighborhood of the manifold  of the minimizers of the loss,


• GD tracks a gradient flow (GF) governed by  (monotone decrease in ).


• GD gets -close to the manifold .


• Phase 2


• (slightly perturbed) GD tracks another flow on  which decreases the loss sharpness


• Unstable: stableness at least in one step of every two consecutive steps is 


• The loss non-monotonically decreases (proportionally to the loss sharpness)

Γ

L L

𝒪(η) Γ

Γ

> 2



Warm-up: Quadratic Loss
 where  is PSDL(x) = 1

2 x⊤Ax A

• Normalized GD on :  


• GD on :  


• If we set  for Normalized GD and  for GD on , 
both ’s satisfy the same update rule


.

L xt+1 = xt − η
∥Axt∥

Axt

L xt+1 = xt − η

2x⊤
t Axt

Axt

x̃t = 1
η Axt x̃t = 1

η (2A)1/2xt L
x̃t

x̃t+1 = x̃t − A
x̃t

∥x̃t∥



Warm-up: Quadratic Loss
 oscillates & aligns to x̃t ±v1

• Consider  with eigenvalues  and  
are the corresponding eigenvectors.


• Theorem 3.1. If  for , then  and  
such that   and .


• The angle  between  and  converges to 0 (“alignment”), while the 
direction of  flips back and forth near the minima.

A ∈ ℝD×D λ1 > λ2 ≥ ⋯ ≥ λD > 0 v1, ⋯, vD

⟨v1, x̃t⟩ ≠ 0 t ≥ 0 ∃C ∈ (0,1) ∃s ∈ {±1}
lim
t→∞

x̃2t = Csλ1v1 lim
t→∞

x̃2t+1 = − (1 − C)sλ1v1

θt x̃t v1
x̃t



Key definitions (1)
Gradient flow (GF), its limiting map, & attraction set of Γ

• GF on  can be described through a mapping   s.t.





• Satisfies  ,  


• The limiting map  of GF:  


• Attraction set  of :  an open neighborhood of  s.t. for all , 

L ϕ : ℝD × [0,∞) → ℝD

ϕ(x, t) = x − ∫
t

0
∇L(ϕ(x, s))ds

ϕ(x,0) = x ∂t ϕ(x, t) = −∇L(ϕ(x, t))

Φ : ℝD → ℝD Φ(x) = lim
t→∞

ϕ(x, t)

U Γ Γ x ∈ U Φ(x) ∈ Γ



Key Definitions (2)
transformed iterate  (motivated by quadratic case)x̃t

• 


• : angle between  & top eigenspace of 


•
,  for 


•  for all   (so that  is a -dimensional manifold)


• : eigenvalue-eigenvector pairs of    ( )


• the first square root term: length of the projection of  onto the bottom-  eigenspace of 

x̃ = {
∇2L(Φ(x))(x − Φ(x)) for Normalized GD on L

(2∇2L(Φ(x)))1/2(x − Φ(x)) for GD on  L

θt ∈ [0,
π
2 ] x̃t ∇2L(Φ(xt))

Rj(x) :=
M

∑
i=j

⟨vi(x), x̃⟩2 −λj(x)η j ∈ [D]

M = rank(∇2L(x)) x ∈ Γ Γ (D − M)

{(λi(x), vi(x))}D
i=1 ∇2L(Φ(x)) λ1 > λ2 ≥ ⋯ ≥ λD

x̃ (D − j) ∇2L(Φ(x))



Results for Normalized GD (1)
Phase I

• Theorem 4.3. Let . Then, there is a constant  such that for 
any  and a sufficiently small LR , the following holds:


(1)   


• (iterates track the GF & get -close to the minimizer manifold )


(2)   


• (projected length of  onto eigenspace of  is not too large)

x0 = xinit ∈ U T1 > 0
T′ 1 > T1 η > 0

max
t∈[T1/η, T′ 1/η]

xt − Φ(xinit) ≤ 𝒪(η)

𝒪(η) Γ

max
t∈[T1/η, T′ 1/η], j∈[D]

Rj(xt) ≤ 𝒪(η2)

x̃t ∇2L(Φ(xt))



Results for Normalized GD (2)
Phase II

• Restart the algorithm from the end of Phase I:   ( )


• Assume that  and   hold for .


• + Assume that the initial alignment of  and  is not too small. (formal description is omitted)


•  will eventually track the following Riemannian gradient flow on :


Limiting Flow:   


•  : projection operator onto the tangent space of  at 


• The sharpness  decreases!

x0 = xPhase I
t t ≥ T1/η

x0 − Φ(xinit) ≤ 𝒪(η) max
j∈[D]

Rj(x0) ≤ 𝒪(η2) x0

x̃0 v1(x0)

xt Γ

X(τ) = Φ(xinit) −
1
4 ∫

τ

0
P⊥

X(s),Γ ∇log λ1(X(s))ds, X(τ) ∈ Γ

P⊥
x,Γ : Γ → ℝD Γ x

λ1(X(τ))



Results for Normalized GD (3)
Phase II

• To make the theoretical analysis feasible, the alignment between  and  should not vanish. 


• To this end, we add a (uniform) noise of magnitude  occasionally. 


• Theorem 4.4. For any constant time  till which the solution of the “limiting flow”  exists, 
for sufficiently small , with probability at least , the iterates of perturbed 
Normalized GD satisfies that 


(1) ,   (tracking the limiting flow)


(2)   (alignment in average)

x̃t v1(xt)

𝒪(η100)

T2 > 0 X
η > 0 1 − 𝒪(η10)

Φ (x⌊T2/η2⌋) − X(T2) = 𝒪(η)

1
⌊T2/η2⌋

⌊T2/η2⌋

∑
t=0

θt ≤ 𝒪(η)



Results for Normalized GD (4)
Phase II → Edge of Stability: High stableness, non-monotonic decrease of loss

• Theorem 4.7. Under the setting of Phase II, by viewing Normalized GD as GD with time-
varying LR , we have


(1)   


• Stableness  2 at least in one of every two consecutive steps. 

(2)   

• Loss (non-monotonically) decreases as the loss sharpness decreases via limiting flow.

ηt = η
∥∇L(xt)∥

1
SL(xt, ηt)

+
1

SL(xt+1, ηt+1)
= 1 + 𝒪(θt + η)

≳

L(xt) + L(xt+1) = η
λ1(∇2L(xt))

2
+ 𝒪(ηθt)



Results for GD on L
Phase II → Edge of Stability: High stableness, non-monotonic decrease of loss

• Theorem 4.8. Under the setting of Phase II, Running GD on , we eventually 
have


(1)   


• Stableness is large. 

(2)   

• Loss (non-monotonically) decreases as the loss sharpness decreases via limiting flow.

L

SL(xt, ηt) ≥ Ω ( 1
θt )

L(xt) + L(xt+1) = ηλ1(∇2L(xt)) + 𝒪(ηθt)



Discussion

• Different setting from Cohen et al. [2021]


• Discrepancy in algorithms.


• The sharpness should decrease to near zero to ensure the convergence in loss  (↔ the 
sharpness hovers around  [Cohen et al., 2021])


• Although the analysis allows some non-smoothness in loss (  case), the manifold  of 
minimizers must be smooth enough (“ -submanifold of ”)


• Locality of the analysis


• The analysis only applies when the initialization is close enough to  


• Non-vanishing but small learning rate 

2/η

L Γ
C2 ℝd

Γ

η


