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Classical Analyses of Optimization Algorithms
Under Lipschitz smoothness

• Unconstrained optimization    with first-order algorithmsmin
x∈ℝd

f(x)
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Classical Analyses of Optimization Algorithms
Under Lipschitz smoothness

• Unconstrained optimization    with first-order algorithms


• Classical textbook analyses [Nemirovskij and Yudin, 1983, Nesterov, 2018]


‣   is Lipschitz smooth with constant :    a.e.*

min
x∈ℝd

f(x)

f L ∥∇2f(x)∥ ≤ L

*a.e. = almost everywhere with respect to the Lebesgue measure
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Classical Analyses of Optimization Algorithms
Under Lipschitz smoothness

• Unconstrained optimization    with first-order algorithms


• Classical textbook analyses [Nemirovskij and Yudin, 1983, Nesterov, 2018]


‣   is Lipschitz smooth with constant :    a.e.*


‣ A consequence:  


‣ E.g., gradient descent:  

min
x∈ℝd

f(x)

f L ∥∇2f(x)∥ ≤ L

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
2 ∥y − x∥2

f(xt+1) ≤ f(xt) − η(1 − ηL/2)∥∇f(xt)∥2 ≤ f(xt)

*a.e. = almost everywhere with respect to the Lebesgue measure
/294



Does Lipschitz Smoothness Reflect Reality?
• Lipschitz smoothness is too strict!


‣ Violated by polynomial ( ), rational, exponential, and logarithmic functions.


• Observation in deep learning


‣ Zhang et al. [2020] observe that local smoothness ( ) varies a lot in terms 
of the gradient norm ( ) in deep architectures.

deg ≥ 3

∥∇2f(x)∥
∥∇f(x)∥
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Does Lipschitz Smoothness Reflect Reality?
• Lipschitz smoothness is too strict!


‣ Violated by polynomial ( ), rational, exponential, and logarithmic functions.


• Observation in deep learning


‣ Zhang et al. [2020] observe that local smoothness ( ) varies a lot in terms 
of the gradient norm ( ) in deep architectures.

deg ≥ 3

∥∇2f(x)∥
∥∇f(x)∥

ResNet (Computer Vision) AWS-LSTM (Language Model)
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Overview of Li et al. [2023]

• They generalize the standard Lipschitz smoothness to the -smoothness 
condition: it assumes that the Hessian norm is bounded by a non-decreasing 
function of the gradient norm.


    ( : non-decreasing, continuous function).


• They prove the convergence of constant-step-size first-order algorithms in the 
convex and non-convex settings, recovering the classical rates of:


‣ Gradient descent (GD);


‣ Stochastic gradient descent (SGD);


‣ Nesterov’s accelerated gradient method (NAG).

ℓ

∥∇2f(x)∥ ≤ ℓ(∥∇f(x)∥) ℓ
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Overview of Li et al. [2023]

• They generalize the standard Lipschitz smoothness to the -smoothness 
condition: it assumes that the Hessian norm is bounded by a non-decreasing 
function of the gradient norm.


    ( : non-decreasing, continuous function).


• They prove the convergence of constant-step-size first-order algorithms in the 
convex and non-convex settings, recovering the classical rates of:


‣ Gradient descent (GD);


‣ Stochastic gradient descent (SGD);


‣ Nesterov’s accelerated gradient method (NAG).

ℓ

∥∇2f(x)∥ ≤ ℓ(∥∇f(x)∥) ℓ
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Generalized Smoothness (1,2)
• Definition 1 ( -smoothness). A real-valued differentiable function    is -smooth for a 

non-decreasing continuous function  if  

  a.e.


• Definition 2 ( -smoothness). A real-valued differentiable function    is -smooth 
for continuous functions  where  is non-decreasing and  is 
non-increasing if, for any  and  ,


.


• Proposition 3.2. 

-smooth  -smooth  -smooth  ( )

ℓ f ℓ
ℓ : [0, +∞) → (0, +∞)

∥∇2f(x)∥ ≤ ℓ(∥∇f(x)∥)

(r, ℓ) f (r, ℓ)
r, ℓ : [0, +∞) → (0, +∞) ℓ r
x ∈ ℝd x1, x2 ∈ 𝔅(x, r(∥∇f(x)∥))

∥∇f(x1) − ∇f(x2)∥ ≤ ℓ(∥∇f(x)∥) ⋅ ∥x1 − x2∥

(r, ℓ) ⇒ ℓ ⇒ ( a
ℓ( ⋅ + a) , ℓ( ⋅ + a)) ∀a > 0
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Generalized Smoothness (1,2)
• Definition 1 ( -smoothness). A real-valued differentiable function    is -smooth for a 

non-decreasing continuous function  if  

  a.e.


• Definition 2 ( -smoothness). A real-valued differentiable function    is -smooth 
for continuous functions  where  is non-decreasing and  is 
non-increasing if, for any  and  ,


.


• Proposition 3.2. 

-smooth  -smooth  -smooth  ( )

ℓ f ℓ
ℓ : [0, +∞) → (0, +∞)

∥∇2f(x)∥ ≤ ℓ(∥∇f(x)∥)

(r, ℓ) f (r, ℓ)
r, ℓ : [0, +∞) → (0, +∞) ℓ r
x ∈ ℝd x1, x2 ∈ 𝔅(x, r(∥∇f(x)∥))

∥∇f(x1) − ∇f(x2)∥ ≤ ℓ(∥∇f(x)∥) ⋅ ∥x1 − x2∥

(r, ℓ) ⇒ ℓ ⇒ ( a
ℓ( ⋅ + a) , ℓ( ⋅ + a)) ∀a > 0

*  = a closed Euclidean ball with radius  centered at 𝔅(x, R) R x
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Generalized Smoothness (3)

• Definition 3 ( -smoothness). A real-valued differentiable function    is 
-smooth for constants  if it is -smooth with .


‣  or : standard Lipschitz smoothness.


‣ : -smoothness [Zhang et al., 2020].

(ρ, L0, Lρ) f
(ρ, L0, Lρ) ρ, L0, Lρ ≥ 0 ℓ ℓ(u) = L0 + Lρuρ

ρ = 0 Lρ = 0

ρ = 1 (L0, L1)

Important subset of -smoothnessℓ

ρ

Functions

0 1

Quadratic Polynomial ax

1 1+

a(bx)

1.5

Rational

2

Logarithmic

p − 2
p − 1

xp

Table. Examples of univariate -smooth functions. The parameters  are real numbers 
such that  and . 1+ means any real number slightly larger than 1.

(ρ, L0, Lρ) a, b, p
a, b > 1 p ∈ (−∞,1) ∪ [2,∞)
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Properties of Generalized Smoothness (1)

• Lemma 3.3. If    is -smooth, for any  satisfying  
and any ,    satisfies  
and  .


• Proof. Since  is non-decreasing and  is non-increasing, we have 
 and . Thus, the first inequality holds 

by definition. The second inequality follows from the first one (proof: use 
integrals.)


• Remark. If we properly bound the gradient norm along the optimization 
trajectory, then we can recover the classical analysis established upon 
Lipschitz smoothness!

f (r, ℓ) x ∈ ℝd ∥∇f(x)∥ ≤ G
x1, x2 ∈ 𝔅(x, r(G)) f ∥∇f(x1) − ∇f(x2)∥ ≤ L∥x1 − x2∥

f(x1) ≤ f(x2) + ⟨∇f(x2), x1 − x2⟩+ L
2 ∥x1 − x2∥2

ℓ r
ℓ(∥∇f(x)∥) ≤ ℓ(G) r(G) ≤ r(∥∇f(x)∥)
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Properties of Generalized Smoothness (1)

• Lemma 3.3. If    is -smooth, for any  satisfying  
and any ,    satisfies  
and  .


• Proof Sketch. Since  is non-decreasing and  is non-increasing, we have 
 and . Thus, the first inequality holds 

by definition. The second inequality follows from the first one (proof: use 
integrals.)


• Remark. If we properly bound the gradient norm along the optimization 
trajectory, then we can recover the classical analysis established upon 
Lipschitz smoothness!

f (r, ℓ) x ∈ ℝd ∥∇f(x)∥ ≤ G
x1, x2 ∈ 𝔅(x, r(G)) f ∥∇f(x1) − ∇f(x2)∥ ≤ L∥x1 − x2∥

f(x1) ≤ f(x2) + ⟨∇f(x2), x1 − x2⟩+ L
2 ∥x1 − x2∥2

ℓ r
ℓ(∥∇f(x)∥) ≤ ℓ(G) r(G) ≤ r(∥∇f(x)∥)
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Properties of Generalized Smoothness (2)

• If  is sub-quadratic ( ), bounded function values imply 
bounded gradient norms.


• Let  .


• Corollary 3.6. Suppose    is -smooth where  is sub-quadratic. If , 
then we have .


• Proof. This is a corollary of Lemma 3.5 (omitted): If    is -smooth, then we can 
show that .


• Remark. In order to bound the gradients along the trajectory, it suffices to bound 
the function values, which is usually easier!

ℓ limu→∞ ℓ(u)/u2 = 0

f* = infx∈ℝd f(x)

f ℓ ℓ f(x) − f* ≤ F
∥∇f(x)∥ ≤ G := sup{u ≥ 0 |u2 ≤ 2ℓ(2u) ⋅ F} < ∞

f ℓ
∥∇f(x)∥2 ≤ 2 ⋅ ℓ(2∥∇f(x)∥) ⋅ ( f(x) − f*)
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Gradient Descent — Convex Setting
• Lemma 4.1. For any  satisfying , define . If    is convex and 

-smooth, and , we have . 


• Proof Sketch. Recall that , . Also, we can prove that convexity 
and -smoothness imply the local co-coercivity:  for 
all  and . Note that . Then by 
applying the local co-coercivity, 


x ∈ ℝd ∥∇f(x)∥ ≤ G x+ := x − η∇f(x) f
(r, ℓ) η ≤ min { 2

ℓ(G) , r(G)
2G } ∥∇f(x+)∥ ≤ ∥∇f(x)∥ ≤ G

ℓ(∥∇f(x)∥) ≤ ℓ(G) r(G) ≤ r(∥∇f(x)∥)
(r, ℓ) ⟨∇f(x) − ∇f(y), x − y⟩ ≥ 1

ℓ(∥∇f(x)∥) ∥y − x∥2

x y ∈ 𝔅(x, r(∥∇f(x)∥)/2) ∥x+ − x∥ = ∥η∇f(x)∥ ≤ ηG ≤ r(G)/2

∥∇f(x+)∥2 − ∥∇f(x)∥2 = 2⟨∇f(x+) − ∇f(x), ∇f(x)⟩ + ∥∇f(x+) − ∇f(x)∥2

= − 2
η ⟨∇f(x+) − ∇f(x), x+ − x⟩ + ∥∇f(x+) − ∇f(x)∥2

≤ − ( 2
η ⋅ ℓ(∥∇f(x)∥) −1) ∥∇f(x+) − ∇f(x)∥2 ≤ 0.
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Gradient Descent — Convex Setting
• Theorem 4.2–3. Suppose    is convex and -smooth. Denote . Choose the step size 

. Then the gradient descent iterates ( ) satisfy  for all  
and 


 (Thm 4.2)


If    is -strongly convex, then


 (Thm 4.3)


• Proof Sketch. Apply Lemma 4.1 and the usual potential function analysis [Bansal and Gupta, 2019].


• Remark. Theorems above recover the classical convergence rates:


‣ Theorem 4.2 gives  gradient complexity for convex -smooth functions to achieve .


‣ Theorem 4.3 gives  gradient complexity for -strongly convex -smooth functions

f (r, ℓ) G = ∥∇f(x0)∥
η ≤ min { 1

ℓ(G) , r(G)
2G } xt+1 = xt − η∇(xt) ∥∇f(xt)∥ ≤ G t ≥ 0

f(xT) − f* ≤
∥x0 − x*∥2

2ηT
.

f μ

f(xT) − f* ≤
μ(1 − ημ)T

2(1 − (1 − ημ)T)
∥x0 − x*∥2.

O(1/ϵ) (r, ℓ) f(xT) − f* ≤ ϵ
O((ημ)−1log(1/ϵ)) μ (r, ℓ)
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Gradient Descent — Convex Setting
• Theorem 4.2–3. Suppose    is convex and -smooth. Denote . Choose the step size 

. Then the gradient descent iterates ( ) satisfy  for all  
and 


 (Thm 4.2)


If    is -strongly convex, then


 (Thm 4.3)


• Proof Sketch. Apply Lemma 4.1 and the usual potential function analysis [Bansal and Gupta, 2019].


• Remark. Theorems above recover the classical convergence rates:


‣ Theorem 4.2 gives  gradient complexity for convex -smooth functions to achieve .


‣ Theorem 4.3 gives  gradient complexity for -strongly convex -smooth functions.

f (r, ℓ) G = ∥∇f(x0)∥
η ≤ min { 1

ℓ(G) , r(G)
2G } xt+1 = xt − η∇(xt) ∥∇f(xt)∥ ≤ G t ≥ 0

f(xT) − f* ≤
∥x0 − x*∥2

2ηT
.

f μ

f(xT) − f* ≤
μ(1 − ημ)T

2(1 − (1 − ημ)T)
∥x0 − x*∥2.

O(1/ϵ) (r, ℓ) f(xT) − f* ≤ ϵ
O((ημ)−1log(1/ϵ)) μ (r, ℓ)
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Gradient Descent — Non-convex Setting
With sub-quadratic ℓ
• Lemma 5.1. Suppose    is -smooth where  is sub-quadratic. For any given , let 

 and . For any  satisfying  , 
define . If , we have .


• Proof Sketch. By Corollary 3.6, we know . By Proposition 3.2, we know -smoothness 
implies -smoothness. Thus, by Lemma 3.3,    is locally Lipschitz -smooth on a 
closed Euclidean ball with a radius . Note that . Then 
applying the usual descent lemma, 


f ℓ ℓ F ≥ 0
G := sup{u ≥ 0 |u2 ≤ 2ℓ(2u) ⋅ F} L = ℓ(2G) x ∈ ℝd f(x) − f* ≤ F

x+ := x − η∇f(x) η ≤ 1
L f(x+) ≤ f(x)

∥∇f(x)∥ ≤ G ℓ
( G

ℓ( ⋅ + G) , ℓ( ⋅ + G)) f L
G/L ∥x+ − x∥ = ∥η∇f(x)∥ ≤ ηG ≤ G/L

f(x+) − f(x) ≤ ⟨∇f(x), x+ − x⟩+ L
2 ∥x+ − x∥2

= − η (1− ηL
2 ) ∥∇f(x)∥2 ≤ 0.
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Gradient Descent — Non-convex Setting
With sub-quadratic ℓ
• Lemma 5.1. Suppose    is -smooth where  is sub-quadratic. For any given , let 

 and . For any  satisfying  , 
define . If , we have .


• Proof Sketch. By Corollary 3.6, we know . By Proposition 3.2, we know -smoothness 
implies -smoothness. Thus, by Lemma 3.3,    is locally Lipschitz -smooth on a 
closed Euclidean ball with a radius . Note that . Then 
applying the usual descent lemma, 
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G := sup{u ≥ 0 |u2 ≤ 2ℓ(2u) ⋅ F} L = ℓ(2G) x ∈ ℝd f(x) − f* ≤ F

x+ := x − η∇f(x) η ≤ 1
L f(x+) ≤ f(x)

∥∇f(x)∥ ≤ G ℓ
( G

ℓ( ⋅ + G) , ℓ( ⋅ + G)) f L
G/L ∥x+ − x∥ = ∥η∇f(x)∥ ≤ ηG ≤ G/L

f(x+) − f(x) ≤ ⟨∇f(x), x+ − x⟩+ L
2 ∥x+ − x∥2

= − η (1− ηL
2 ) ∥∇f(x)∥2 ≤ 0.
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Gradient Descent — Non-convex Setting
With sub-quadratic ℓ

• Theorem 5.2. Suppose    is -smooth where  is sub-quadratic. Let  
and . Choose the step size . Then the gradient descent iterates ( ) satisfy  

 for all  and 





• Proof Sketch. Applying Lemma 5.1 and Corollary 3.6, we obtain  and thus . Following the 
proof of Lemma 5.1, we obtain   Taking a summation over  
and rearranging terms, we complete the proof.


• Remark. Theorem above recovers the classical convergence rates:


‣ Theorem 5.2 gives  gradient complexity for -smooth functions to achieve an -stationary point, 
which is optimal as it matches the lower bound in Carmon et al. [2020].

f ℓ ℓ G := sup{u ≥ 0 |u2 ≤ 2ℓ(2u) ⋅ ( f(x0) − f*)}
L = ℓ(2G) η ≤ 1

L xt+1 = xt − η∇(xt)
∥∇f(xt)∥ ≤ G t ≥ 0

1
T

T−1

∑
t=0

∥∇f(xt)∥2 ≤
2( f(x0) − f*)

ηT
.

f(xt) ≤ f(x0) ∥∇f(xt)∥ ≤ G
f(xt+1) − f(xt) ≤ − η (1− ηL

2 ) ∥∇f(xt)∥2. t = 0,⋯, T − 1

O(1/ϵ2) (r, ℓ) ϵ
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Gradient Descent — Non-convex Setting
What about non-sub-quadratic ? ( )ℓ ρ ≥ 2

• The gradient complexity is at least exponentially large in the problem parameter.


• Theorem 5.4. Given  such that , for any , there 
exists a -smooth univariate function   , which is bounded below, and an 
initial point  satisfying  and , such that GD with step 
size  either cannot reach a 1-stationary point or takes at least  steps 
to reach a 1-stationary point.


• Proof Sketch. If , taking  , GD will diverge. Otherwise, we carefully 
take a piecewise logarithmic/quadratic function (which is -smooth, 
independent to the step-size) so that either GD gets stuck or takes exponentially many 
steps to reach a 1-stationary point. 

L0, L2, F0, G0 > 0 L2F0 ≥ 10 η ≥ 0
(2, L0, L2) f

x0 | f′ (x0) | ≤ G0 f(x0) − f* ≤ F0
η exp(L2F0/8)/6

η >
L0

2 f(x) =
L0

2 x2

(2,L0, L2)
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Nesterov’s Accelerated Gradient Method
Convex & Sub-quadratic   ➡  Optimal  gradient complexityℓ O(1/ ϵ)

• Theorem 4.4. Suppose    is convex and -smooth where  is sub-quadratic. Let 
 be a constant satisfying . Denote 

 and choose . The iterates generated by NAG satisfy


.

f ℓ ℓ
G G ≥ max {8 ℓ(2G)(( f(x0) − f*) + ∥x0 − x*∥2), ∥∇f(x0)∥}
L = ℓ(2G) η ≤ min{ 1

16L2 , 1
2L }

f(xT) − f* ≤
4( f(x0) − f*) + r∥x0 − x*∥2

ηT2 + 4
/2925



Stochastic Gradient Descent
Non-convex & Sub-quadratic   ➡  Optimal  gradient complexity (w.h.p.)ℓ O(1/ϵ4)

• Assumption: Stochastic gradient  is unbiased and has bounded variance ( ).


• Theorem 5.3. Suppose -smooth where  is sub-quadratic. For any , 
denote  and . 
Denote  and choose  and  for any . Then 

with probability at least ,  the iterates generated by SGD satisfy 
  for all  and 


gt σ2

ℓ ℓ δ ∈ (0,1)
F = 8( f(x0) − f* + σ)/δ G = sup{u ≥ 0 |u2 ≤ 2ℓ(2u) ⋅ F}
L = ℓ(2G) η ≤ min{ 1

2L , 1

4G T
} T ≥ F

ηϵ2 ϵ > 0

1 − δ
∥∇f(xt)∥ ≤ G t < T

1
T

T−1

∑
t=0

∥∇f(xt)∥2 ≤ ϵ2
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Summary
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Discussions
• All the results are in the form of:


• Generalized smoothness (assumption) 

• + Bounded gradients along the trajectory (not an assumption) 

➡ Standard Lipschitz smoothness! Similar analyses to the classical ones!


• Generalized smoothness might give a better geometry than the standard Lipschitz smoothness.


• If generalized smoothness can give a tighter upper bound on the Hessian norm than the Lipschitz 
smoothness along the trajectory, shouldn't we have gotten a better convergence rate, rather than 
obtaining the identical rate as the classical one?


• In the non-convex setting (sub-quadratic ), (S)GD is still rate-optimal. In practice, vanilla (S)GD performs 
worse than methods with momentum or adaptive methods. This means either…


• Although the rate is optimal, the hidden constants are too large, which hurts the performance in reality. 


• Or, generalized smoothness might not be enough.

ℓ
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