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Classical Analyses of Optimization Algorithms
Under Lipschitz smoothness

. Unconstrained optimization miI}l f(x) with first-order algorithms
x€ER

» (Classical textbook analyses [Nemirovskij and Yudin, 1983, Nesterov, 2018]

> { is Lipschitz smooth with constant L: ||V*f(x)|| < L a.e.*
L
. A consequence: f(y) < f(x) + ( V() y — 1)+ =Ly x|

» E.g., gradient descent: f(x,, ;) < f(x) — n(1 — yL/2)||Vf(x)||* < fix)

*a.e. = almost everywhere with respect to the Lebesgue measure
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Does Lipschitz Smoothness Reflect Reality?

e Lipschitz smoothness is too strict!

> \iolated by polynomial (deg > 3), rational, exponential, and logarithmic functions.



Does Lipschitz Smoothness Reflect Reality?

e Lipschitz smoothness is too strict!

> Violated by polynomial (deg > 3), rational, exponential, and logarithmic functions.

* Observation in deep learning

» Zhang et al. [2020] observe that local smoothness (|| V*f(x)||) varies a lot in terms
of the gradient norm (|| Vf(x)||) in deep architectures.
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Overview of Li et al. [2023]

» They generalize the standard Lipschitz smoothness to the £-smoothness
condition: it assumes that the Hessian norm is bounded by a non-decreasing
function of the gradient norm.

V(x| < Z(|VFAX)|) (£: non-decreasing, continuous function).
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Overview of Li et al. [2023]

» They generalize the standard Lipschitz smoothness to the £-smoothness
condition: it assumes that the Hessian norm is bounded by a non-decreasing
function of the gradient norm.

V(x| < Z(|VFAX)|) (£: non-decreasing, continuous function).

* They prove the convergence of constant-step-size first-order algorithms in the
convex and non-convex settings, recovering the classical rates of:

> Gradient descent (GD);
> Stochastic gradient descent (SGD);

> Nesterov’s accelerated gradient method (NAG).
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Generalized Smoothness (1,2)

 Definition 1 (/-smoothness). A real-valued differentiable function f is £-smooth for a
non-decreasing continuous function £ : [0, +00) — (0, +00) if

IVl < £(IVAR) ae.
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Generalized Smoothness (1,2)

 Definition 1 (/-smoothness). A real-valued differentiable function f is £-smooth for a
non-decreasing continuous function £ : [0, +00) — (0, +00) if

IVl < £(IVAR) ae.

 Definition 2 ((7, £)-smoothness). A real-valued differentiable function f is (r, £)-smooth
for continuous functions r, £ : [0, +o0) — (0, +00) where £ is non-decreasing and r is
non-increasing if, for any x € R¢ and X1, X% € Bx, r(||V/(O)I)),

|Vf(x) = V)| S UV - [lx — x|

* Proposition 3.2.
(r, £)-smooth = £-smooth = (

A

£(-+a)’

C(-+ a))—smooth (Va > 0)

*B(x, R) = a closed Euclidean ball with radius R centered at x /
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Generalized Smoothness (3)

Important subset of /-smoothness

. Definition 3 ((p, L, Lp)—smoothness). A real-valued differentiable function f is
(0, Ly, L,)-smooth for constants p, Ly, L, > 0 if it is £-smooth with £(u) = Ly + L, u”.

> p =0orL, = 0: standard Lipschitz smoothness.

> p = 1: (L, L)-smoothness [Zhang et al., 2020].

0 1 1 1+ 1.5 2 pTI

MY Quadratic Polynomial ¢* ¢’ Rational Logarithmic  x”

Table. Examples of univariate (p, L, L,)-smooth functions. The parameters a, b, p are real numbers
suchthata,b > 1and p € (—00,1) U [2,00). 1+ means any real number slightly larger than 1.
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Properties of Generalized Smoothness (1)

. Lemma 3.3. If f is (r, £)-smooth, for any x € R¥ satisfying || Vf(x)|| < G
and any x;, x, € B(x, r(()), f satisfies !Vf(xl) — V()| < Lllx; — x|

and f(x)) < f(x)) + (Vf(xy), x| — xz)"‘j”ﬁ — szZ-



Properties of Generalized Smoothness (1)

. Lemma 3.3. If f is (r, £)-smooth, for any x € R¥ satisfying || Vf(x)|| < G
and any x;, x, € B(x, r(()), f satisfies !Vf(xl) — V()| < Lllx; — x|
and f(x)) < f(x) + (VS(xy), x; — x2)+3Hx1 — X2H2-

 Proof Sketch. Since ¢ is non-decreasing and r is non-increasing, we have

C([|IVIXO)I|) £€(G) and r(G) < r(||VA(x)]|). Thus, the first inequality holds
by definition. The second inequality follows from the first one (proof: use
integrals.)

 Remark. If we properly bound the gradient norm along the optimization
trajectory, then we can recover the classical analysis established upon

Lipschitz smoothness!
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Properties of Generalized Smoothness (2)

» If ' is sub-quadratic (lim,_, Z(u)/u’ = 0), bounded function values imply
bounded gradient norms.

o Let f* = 1nt _pa f(X).

 Corollary 3.6. Suppose f is £-smooth where ¢ is sub-quadratic. If f(x) — f* < F,
then we have ||Vf(x)|| < G := sup{u > 0|u? < 2/Qu) - F} < .
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Properties of Generalized Smoothness (2)

e If £ is sub-quadratic (Ii1m Z(u)/u’ = 0), bounded function values imply

bounded gradient norms.

o Let f* = 1nt _pa f(X).

 Corollary 3.6. Suppose f is £-smooth where ¢ is sub-quadratic. If f(x) — f* < F,
then we have ||Vf(x)|| < G := sup{u > 0|u? < 2/Qu) - F} < .

Uu— Qoo

 Proof Sketch. This is a corollary of Lemma 3.5: If f is £-smooth, then we can

show that [|VAX)[|* < 2 - £V - (flx) = f).

* Remark. In order to bound the gradients along the trajectory, it suffices to bound
the function values, which is usually easier!
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Gradient Descent — Convex Setting

. Lemma 4.1. For any x € R satisfying || Vf(x)|| < G, define x™ := x — n Vf(x). If f is convex and

(r, £)-smooth, and # < min { f(zG) | rég) } we have ||V < |V < G.
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Gradient Descent — Convex Setting

. Lemma 4.1. For any x € R satisfying || Vf(x)|| < G, define x™ := x — n Vf(x). If f is convex and

(r, £)-smooth, and # < min { f(zG) | r;g) } we have ||V < |V < G.

« Proof Sketch. Recall that Z(||Vf(x)||) < £(G), r(G) < r(||Vf(x)|]). Also, we can prove that convexity

and (7, £)-smoothness imply the local co-coercivity: { Vf(x) — VfA(y),x —y) > f(||V;(x)||) |y — x]||? for

all xand y € B(x, r(||V(x)||)/2). Note that ||x™ — x|| = |7 V/(X)|| £ nG < r(G)/2. Then by
applying the local co-coercivity,

IVACHI? = IVAI? = 2( V") = V), V) + V) = VA
= —=(Vfx®) = Vf@), x* = x) + | V) = V)P

= - <n-f<||2w<x>||> 1) V™) = VA" < 0

18/29



Gradient Descent — Convex Setting

» Theorem 4.2-3. Suppose | is convex and (7, £’ )-smooth. Denote G = ||V f(x)||. Choose the step size
: 1 nG) . . .
7 < minj - 0 [ Then the gradient descent iterates (x,, ; = x, — 1V (x))) satisfy || Vf(x)|| < G forallt > 0O

and

- IR
Jlxp) —f* < T (Thm 4.2)

If f is u-strongly convex, then

e /’t(l_’/}//t)T k12
fop) =% < e = P hm 43

* Proof Sketch. Apply Lemma 4.1 and the usual potential function analysis [Bansal and Gupta, 2019].
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Gradient Descent — Convex Setting

» Theorem 4.2-3. Suppose | is convex and (7, £’ )-smooth. Denote G = ||V f(x)||. Choose the step size
: 1 nG) . . .
n < min { G 20 } Then the gradient descent iterates (x,, ; = x, — n V(x,)) satisfy || Vf(x)| < G forallt > 0

and

- IR
Jlxp) —f* < T (Thm 4.2)

If f is u-strongly convex, then

. u(l —nu)’
o) =1 S S T —

* Proof Sketch. Apply Lemma 4.1 and the usual potential function analysis [Bansal and Gupta, 2019].

[0 — x*[|*. (Thm 4.3)

 Remark. Theorems above recover the classical convergence rates:
» Theorem 4.2 gives O(1/€) gradient complexity for convex (r, £)-smooth functions to achieve f(x;) — f* < €.

» Theorem 4.3 gives O((nu) " '1og(1/€)) gradient complexity for u-strongly convex (7, £)-smooth functions.
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Gradient Descent — Non-convex Setting
With sub-quadratic 7

e Lemma 5.1. Suppose f is £-smooth where ¢ is sub-quadratic. For any given F' > 0, let
G = Sup{u > 0|u’ <2Qu) - F} and L = Z(2G). For any x € R satisfying f(x) — * < F,

define x™ :=x — n Vf(x). If < -, we have f(x™) < f(x).
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Gradient Descent — Non-convex Setting
With sub-quadratic 7

e Lemma 5.1. Suppose f is £-smooth where ¢ is sub-quadratic. For any given F' > 0, let
G = Sup{u > 0|u’ <2Qu) - F} and L = Z(2G). For any x € R satisfying f(x) — * < F,
define x™ :=x — n Vf(x). If < -, we have f(x™) < f(x).

 Proof Sketch. By Corollary 3.6, we know ||Vf(x)|| < G. By Proposition 3.2, we know £-smoothness
implies (f( G £ ( - + G))-smoothness. Thus, by Lemma 3.3, f is locally Lipschitz L-smooth on a

closed Euclidean ball with a radius G/L. Note that ||x™ — x|| = ||y V/(x)|| < nG < G/L. Then
applying the usual descent lemma,

firt) = fx) < (Vfx), xF = x)+5]1x" — x|
= - (1-5) IVfI? <0,
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Gradient Descent — Non-convex Setting
With sub-quadratic 7

. Theorem 5.2. Suppose f is £-smooth where ¢ is sub-quadratic. Let G := sup{u > 0| u* < 2Z2u) - (f(xg) =)}
and L = £(2G). Choose the step size 1 < % Then the gradient descent iterates (x,, ; = x, — 1 V (x,)) satisfy

|V/(x)|| < G forallt > 0 and

2(f(xp) = ™)
nT

1 T—1
— 2 IVl <
=0

» Proof Sketch. Applying Lemma 5.1 and Corollary 3.6, we obtain f(x,) < f(x,) and thus [|Vf(x,)|| £ G. Following the
L
proof of Lemma 5.1, we obtain f(x,, ) —f(x,) < —7 1—% HVf(xt)Hz. Taking a summation overt = 0,---, 7 — 1
and rearranging terms, we complete the proof.

* Remark. Theorem above recovers the classical convergence rates:

» Theorem 5.2 gives O(1/¢?) gradient complexity for (r, £)-smooth functions to achieve an e-stationary point,
which is optimal as it matches the lower bound in Carmon et al. [2020].
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Gradient Descent — Non-convex Setting
What about non-sub-quadratic 7? (p > 2)

* The gradient complexity is at least exponentially large in the problem parameter.

« Theorem 5.4. Given L, L,, I\, G, > O such that L,F, > 10, for any n > 0, there
exists a (2, L, L,)-smooth univariate function f, which is bounded below, and an
initial point x, satisfying | f'(xy) | < Gy and f(x,) — f* < F|), such that GD with step
size 1 either cannot reach a 1-stationary point or takes at least exp(L,F,/8)/6 steps
to reach a 1-stationary point.

Ly . Ly 5 s .
+ Proof Sketch. If n > —, taking f(x) = —-Xx~, GD will diverge. Otherwise, we carefully

take a piecewise logarithmic/quadratic function (which is (2,L,,, L,)-smooth,

independent to the step-size) so that either GD gets stuck or takes exponentially many
steps to reach a 1-stationary point.
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Nesterov’s Accelerated Gradient Method
Convex & Sub-quadratic £ = Optimal 0(1/\/5) gradient complexity

Algorithm 1: Nesterov’s Accelerated Gradient Method (NAG)

input A convex and /-smooth function f, stepsize 7, initial point
1: Initialize 20 = X0, Bo — O, and AO — ]./77
2: for t=0,... do
3: Bt+1:Bt+%(1+\/4Bt+].)

4: A1 =B +1/n

5 yr=x+ (1 — As/Apr1)(2¢ — x4)

6:  Tir1 =y — NV f(yt)

7o zgp1 = 2z — (A1 — A) VI (y1)

8: end for

» Theorem 4.4. Suppose f is convex and £-smooth where £ is sub-quadratic. Let
G be a constant satisfying G > max {8\/ £QG)((f(xg) — f*) + llxg — x*¥11%), | VA } Denote

_ : 1
L = £(2G) and choose n < min{ o
4(f(xy) — f*) + rllxg — x*||?

_ %
Jflxp) —f* < T E—
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Stochastic Gradient Descent

Non-convex & Sub-quadratic #Z = Optimal O(1/¢%) gradient complexity (w.h.p.)

« Assumption: Stochastic gradient g, is unbiased and has bounded variance (02).

» Theorem 5.3. Suppose £-smooth where ¢ is sub-quadratic. For any 0 € (0,1),
denote F = 8(f(x,) — f* + 6)/8 and G = sup{u > 0|u* < 2¢2u) - F}.

Denote L = £(2G) and choose 1 < min{—,——)and T > - forany ¢ > 0. Then
2L 4Gﬁ ne?
with probability at least 1 — 0, the iterates generated by SGD satisfy

|V/(x)|| £ G forallt < T and

1 T—1
— 2 IVl < €7
=0
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Summary

Table 1: Summary of the results. € denotes the sub-optimality gap of the function value in convex
settings, and the gradient norm 1n non-convex settings. “x”’ denotes optimal rates.

Method Convexity ¢-smoothness Gradient complexity
Strongly convex . O(log(1/¢€)) (Theorem 4.3)
D Convex No requirement O(1/¢) (Theorem 4.2)
Sub-quadratic £ O(1/€*)* (Theorem 5.2)
Non-convex
Quadratic / ()(exp. in cond #) (Theorem 5.4 )
NAG Convex Sub-quadratic / O(1/+/€)* (Theorem 4.4 )

SGD Non-convex  Sub-quadratic ¢ O(1/€*)* (Theorem 5.3)
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Discussions

* All the results are in the form of:
* (Generalized smoothness (assumption)
* + Bounded gradients along the trajectory (not an assumption)
= Standard Lipschitz smoothness! Similar analyses to the classical ones!

* (Generalized smoothness might give a better geometry than the standard Lipschitz smoothness.

* |If generalized smoothness can give a tighter upper bound on the Hessian norm than the Lipschitz
smoothness along the trajectory, shouldn't we have gotten a better convergence rate, rather than
obtaining the identical rate as the classical one?

» In the non-convex setting (sub-quadratic £), (S)GD is still rate-optimal. In practice, vanilla (S)GD performs
worse than methods with momentum or adaptive methods. This means either...

* Although the rate is optimal, the hidden constants are too large, which hurts the performance in reality.

* Or, generalized smoothness might not be enough.
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