Speaker: Hanseul Cho

AI709 Presentation: Convex and Non-convex Optimization under Generalized Smoothness Haochuan Li*, Jian Qian*, Yi Tian, Alexander Rakhlin, Ali Jadbabaie NeurIPS 2023 (Spotlight)

Classical Analyses of Optimization Algorithms Under Lipschitz smoothness

• Unconstrained optimization $\min_{x\in\mathbb{D}^d} f(x)$ with first-order algorithms *x*∈ℝ*^d*

f(*x*)

Classical Analyses of Optimization Algorithms Under Lipschitz smoothness

- Unconstrained optimization $\min_{x \in \mathbb{D}^d} f(x)$ with first-order algorithms *x*∈ℝ*^d f*(*x*)
- Classical textbook analyses [Nemirovskij and Yudin, 1983, Nesterov, 2018] \blacktriangleright f is Lipschitz smooth with constant $L:$ $\|\nabla^2 f(x)\| \leq L$ a.e.*
	-

 $*a.e. = almost everywhere with respect to the Lebesgue measure$

3/29

Classical Analyses of Optimization Algorithms Under Lipschitz smoothness

- Unconstrained optimization $\min_{x \in \mathbb{D}^d} f(x)$ with first-order algorithms *x*∈ℝ*^d f*(*x*)
- Classical textbook analyses [Nemirovskij and Yudin, 1983, Nesterov, 2018] \blacktriangleright f is Lipschitz smooth with constant $L:$ $\|\nabla^2 f(x)\| \leq L$ a.e.* ► A consequence: $f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ ► E.g., gradient descent: $f(x_{t+1}) \leq f(x_t) - \eta(1 - \eta L/2) ||\nabla f(x_t)||^2 \leq f(x_t)$)
-
-
-

 $*a.e. = almost everywhere with respect to the Lebesgue measure$

4/29

Does Lipschitz Smoothness Reflect Reality?

- Lipschitz smoothness is too strict!
	-

▶ Violated by polynomial ($deg \geq 3$), rational, exponential, and logarithmic functions.

Does Lipschitz Smoothness Reflect Reality?

- Lipschitz smoothness is too strict!
	-
- Observation in deep learning
	- of the gradient norm ($\|\nabla f(x)\|$) in deep architectures.

▶ Violated by polynomial ($deg \geq 3$), rational, exponential, and logarithmic functions.

▸ Zhang et al. [2020] observe that local smoothness ($\|\nabla^2 f(x)\|$) varies a lot in terms

Overview of Li et al. [2023]

• They generalize the standard Lipschitz smoothness to the ℓ -smoothness **function of the gradient norm**.

condition: it assumes that **the Hessian norm is bounded by a non-decreasing**

non-decreasing, continuous function).

$$
\|\nabla^2 f(x)\| \le \mathcal{C}(\|\nabla f(x)\|) \quad (\mathcal{C}.
$$

Overview of Li et al. [2023]

• They generalize the standard Lipschitz smoothness to the ℓ -smoothness **function of the gradient norm**.

condition: it assumes that **the Hessian norm is bounded by a non-decreasing**

non-decreasing, continuous function).

• They prove the convergence of constant-step-size first-order algorithms in the

- convex and non-convex settings, recovering the classical rates of:
	- ‣ Gradient descent (GD);
	- ‣ Stochastic gradient descent (SGD);
	- ‣ Nesterov's accelerated gradient method (NAG).

$$
\|\nabla^2 f(x)\| \le \ell(\|\nabla f(x)\|) \quad (\ell.
$$

Generalized Smoothness (1,2)

• **Definition 1** (ℓ -smoothness). A real-valued differentiable function f is ℓ -smooth for a non-decreasing continuous function $\ell : [0, +\infty) \to (0, +\infty)$ if

 $||\nabla^2 f(x)|| \le \ell(||\nabla f(x)||)$ a.e.

Generalized Smoothness (1,2)

- **Definition 1** (ℓ -smoothness). A real-valued differentiable function f is ℓ -smooth for a non-decreasing continuous function $\ell : [0, +\infty) \to (0, +\infty)$ if $||\nabla^2 f(x)|| \le \ell(||\nabla f(x)||)$ a.e.
- **Definition 2** ((r, ℓ) -smoothness). A real-valued differentiable function f is (r, ℓ) -smooth for continuous functions $r, \ell : [0, +\infty) \to (0, +\infty)$ where ℓ is non-decreasing and r is non-increasing if, for any $x \in \mathbb{R}^d$ and $x_1, x_2 \in \mathcal{B}(x, r(||\nabla f(x)||))$, $||\nabla f(x_1) - \nabla f(x_2)|| \leq \ell(||\nabla f(x)||) \cdot ||x_1 - x_2||.$ $x \in \mathbb{R}^d$ and $x_1, x_2 \in \mathfrak{B}(x, r(||\nabla f(x)||))$

 $\mathcal{B}(x, R)$ = a closed Euclidean ball with radius R centered at x

Generalized Smoothness (1,2)

- **Definition 1** (ℓ -smoothness). A real-valued differentiable function f is ℓ -smooth for a non-decreasing continuous function $\ell : [0, +\infty) \to (0, +\infty)$ if $||\nabla^2 f(x)|| \le \ell(||\nabla f(x)||)$ a.e.
- **Definition 2** ((r, ℓ) -smoothness). A real-valued differentiable function f is (r, ℓ) -smooth for continuous functions $r, \ell : [0, +\infty) \to (0, +\infty)$ where ℓ is non-decreasing and r is non-increasing if, for any $x \in \mathbb{R}^d$ and $x_1, x_2 \in \mathcal{B}(x, r(||\nabla f(x)||))$, $||\nabla f(x_1) - \nabla f(x_2)|| \leq \ell(||\nabla f(x)||) \cdot ||x_1 - x_2||.$ $x \in \mathbb{R}^d$ and $x_1, x_2 \in \mathfrak{B}(x, r(||\nabla f(x)||))$
- **Proposition 3.2.**

 (r, ℓ) -smooth $\Rightarrow \ell$ -smooth $\Rightarrow \left(\frac{a}{\ell(\ell)}\right)$

 $\mathcal{B}(x, R)$ = a closed Euclidean ball with radius R centered at x

$$
-\text{smooth} \Rightarrow \ell\text{-smooth} \Rightarrow \left(\frac{a}{\ell(\cdot+a)}, \ell(\cdot+a)\right) \text{-smooth } (\forall a > 0)
$$

Generalized Smoothness (3) Important subset of *ℓ***-smoothness**

- Definition 3 ((ρ, L_0, L_ρ) -smoothness). A real-valued differentiable function f is
	- ► $ρ = 0$ or $L_ρ = 0$: standard Lipschitz smoothness.
	- $\rho = 1$: (L_0, L_1) -smoothness [Zhang et al., 2020].

-smooth for constants $\rho, L_0, L_0 \geq 0$ if it is ℓ -smooth with $\ell(u) = L_0 + L_0 u^{\rho}$. (ρ, L_0, L_ρ) -smooth for constants $\rho, L_0, L_\rho \geq 0$ if it is ℓ -smooth with $\ell(u) = L_0 + L_\rho u^\rho$

Table. Examples of univariate (ρ, L_0, L_ρ) -smooth functions. The parameters a, b, p are real numbers $\mathsf{such\ that}\ a, b>1\ \mathsf{and}\ p\in (-\infty, \mathrm{l})\cup [2,\infty).$ 1+ means any real number slightly larger than 1.

Properties of Generalized Smoothness (1)

and any $x_1, x_2 \in \mathfrak{B}(x, r(G))$, f satisfies and $f(x_1) \leq f(x_2) + \langle \nabla f(x_2), x_1 - x_2 \rangle + \frac{1}{2} ||x_1 - x_2||^2$. $f(x_1) \leq f(x_2) + \sqrt{\nabla f(x_2)}, x_1 - x_2 \geq \frac{E}{2} ||x_1 - x_2||^2$

• Lemma 3.3. If f is (r, ℓ) -smooth, for any $x \in \mathbb{R}^d$ satisfying $\|\nabla f(x)\| \leq G$ $x_1, x_2 \in \mathfrak{B}(x, r(G)),$ f satisfies $\|\nabla f(x_1) - \nabla f(x_2)\| \le L\|x_1 - x_2\|$

Properties of Generalized Smoothness (1)

• *Proof Sketch.* Since ℓ is non-decreasing and r is non-increasing, we have $\ell^p(|\nabla f(x)||) \leq \ell^p(G)$ and $r(G) \leq r(||\nabla f(x)||)$. Thus, the first inequality holds by definition. The second inequality follows from the first one (proof: use

- and any $x_1, x_2 \in \mathfrak{B}(x, r(G))$, f satisfies and $f(x_1) \leq f(x_2) + \langle \nabla f(x_2), x_1 - x_2 \rangle + \frac{1}{2} ||x_1 - x_2||^2$. $f(x_1) \leq f(x_2) + \sqrt{\nabla f(x_2)}, x_1 - x_2 \geq \frac{E}{2} ||x_1 - x_2||^2$
- integrals.)
- **Remark.** If we properly bound the gradient norm along the optimization trajectory, then we can recover the classical analysis established upon Lipschitz smoothness!

• Lemma 3.3. If f is (r, ℓ) -smooth, for any $x \in \mathbb{R}^d$ satisfying $\|\nabla f(x)\| \leq G$ $x_1, x_2 \in \mathfrak{B}(x, r(G)),$ f satisfies $\|\nabla f(x_1) - \nabla f(x_2)\| \le L\|x_1 - x_2\|$

Properties of Generalized Smoothness (2)

- If ℓ is sub-quadratic $\lim_{u\to\infty} \ell(u)/u^2=0$), bounded function values imply bounded gradient norms. ℓ is sub-quadratic $(\lim_{u\to\infty}\ell(u)/u^2=0)$
- Let $f^* = \inf_{x \in \mathbb{R}^d} f(x)$.
- then we have $\|\nabla f(x)\| \le G := \sup\{u \ge 0 \mid u^2 \le 2\ell(2u) \cdot F\} < \infty$.

• **Corollary 3.6.** Suppose f is ℓ -smooth where ℓ is sub-quadratic. If $f(x) - f^* \leq F$, ∥∇*f*(*x*)∥ ≤ *G* := sup{*u* ≥ 0|*u*² ≤ 2*ℓ*(2*u*) ⋅ *F*} < ∞

Properties of Generalized Smoothness (2)

- If ℓ is sub-quadratic $\lim_{u\to\infty} \ell(u)/u^2=0$), bounded function values imply bounded gradient norms. ℓ is sub-quadratic $(\lim_{u\to\infty}\ell(u)/u^2=0)$
- Let $f^* = \inf_{x \in \mathbb{R}^d} f(x)$.
- then we have $\|\nabla f(x)\| \le G := \sup\{u \ge 0 \mid u^2 \le 2\ell(2u) \cdot F\} < \infty$.
- show that $||\nabla f(x)||^2 \leq 2 \cdot \ell(2||\nabla f(x)||) \cdot (f(x) f^*)$. ∥∇*f*(*x*)∥² ≤ 2 ⋅ *ℓ*(2∥∇*f*(*x*)∥) ⋅ (*f*(*x*) − *f**)
- the function values, which is usually easier!

• **Corollary 3.6.** Suppose f is ℓ -smooth where ℓ is sub-quadratic. If $f(x) - f^* \leq F$, ∥∇*f*(*x*)∥ ≤ *G* := sup{*u* ≥ 0|*u*² ≤ 2*ℓ*(2*u*) ⋅ *F*} < ∞

• *Proof Sketch.* This is a corollary of Lemma 3.5: If f is ℓ -smooth, then we can

Remark. In order to bound the gradients along the trajectory, it suffices to bound

-smooth, and $\eta \le \min \left\{ \frac{2}{\ell(\alpha)}, \frac{2\alpha}{\alpha \alpha} \right\}$, we have $\|\nabla f(x^+)\| \le \|\nabla f(x)\| \le G$. (r, ℓ) -smooth, and $\eta \le \min \left\{ \frac{2}{\ell(G)} \right\}$, *r*(*G*)

• Lemma 4.1. For any $x \in \mathbb{R}^d$ satisfying $\|\nabla f(x)\| \le G$, define $x^+ := x - \eta \nabla f(x)$. If f is convex and $x \in \mathbb{R}^d$ satisfying $\|\nabla f(x)\| \leq G$, define $x^+ := x - \eta \nabla f(x)$. If f $\left|\frac{\partial \mathbf{G}}{\partial G}\right|$, we have $\|\nabla f(x^+) \| \leq \|\nabla f(x) \| \leq G$

- Lemma 4.1. For any $x \in \mathbb{R}^d$ satisfying $||\nabla f(x)|| \leq G$, define $x^+ := x \eta \nabla f(x)$. If f is convex and -smooth, and $\eta \le \min \left\{ \frac{2}{\ell(\alpha)}, \frac{2\alpha}{\alpha \alpha} \right\}$, we have $\|\nabla f(x^+)\| \le \|\nabla f(x)\| \le G$. (r, ℓ) -smooth, and $\eta \le \min \left\{ \frac{2}{\ell(G)} \right\}$, *r*(*G*)
-

• *Proof Sketch.* Recall that $\ell(\|\nabla f(x)\|) \leq \ell(G)$, $r(G) \leq r(\|\nabla f(x)\|)$. Also, we can prove that convexity and (r, ℓ) -smoothness imply the local co-coercivity: $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{1}{e(x|\nabla \ell(x)|}||y - x||^2$ for all x and $y \in \mathfrak{B}(x, r(||\nabla f(x)||)/2)$. Note that $||x^+ - x|| = ||\eta \nabla f(x)|| \leq \eta G \leq r(G)/2$. Then by applying the local co-coercivity, $\ell^{\ell}(\|\nabla f(x)\|) \leq \ell^{\ell}(G), r(G) \leq r(\|\nabla f(x)\|)$ (r, ℓ) -smoothness imply the local co-coercivity: $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{1}{\ell(\sqrt{|\nabla f|^2})}$ $\mathscr{C}(\|\nabla f(x)\|)$ $||y - x||^2$

$$
\|\nabla f(x^+) \|^2 - \|\nabla f(x) \|^2 = 2\langle \nabla f(x^+) - \nabla f(x), \nabla f(x) \rangle + \|\nabla f(x^+) - \nabla f(x) \|^2
$$

= $-\frac{2}{\eta} \langle \nabla f(x^+) - \nabla f(x), x^+ - x \rangle + \|\nabla f(x^+) - \nabla f(x) \|^2$
 $\leq -\left(\frac{2}{\eta \cdot \ell(\|\nabla f(x)\|)} - 1\right) \|\nabla f(x^+) - \nabla f(x) \|^2 \leq 0.$

 $\left|\frac{\partial \mathbf{G}}{\partial G}\right|$, we have $\|\nabla f(x^+) \| \leq \|\nabla f(x) \| \leq G$

• *Proof Sketch.* Apply Lemma 4.1 and the usual potential function analysis [Bansal and Gupta, 2019].

. Then the gradient descent iterates $(x_{t+1} = x_t - \eta \nabla(x_t))$ satisfy $||\nabla f(x_t)|| \le G$ for all $\left|\frac{X_t}{2G}\right.$ }. Then the gradient descent iterates $(x_{t+1} = x_t - \eta \, \nabla(x_t))$ satisfy $\|\nabla f(x_t)\| \leq G$ for all $t \geq 0$

• **Theorem 4.2–3.** Suppose f is convex and (r, ℓ) -smooth. Denote $G = ||\nabla f(x_0)||$. Choose the step size and $\eta \le \min \left\{ \frac{1}{\ell(G)} \right\}$, *r*(*G*)

$$
f(x_T) - f^* \le \frac{\|x_0 - x^*\|^2}{2\eta T}.
$$
 (Thm 4.2)

If f is μ -strongly convex, then

$$
f(x_T) - f^* \le \frac{\mu (1 - \eta \mu)^T}{2(1 - (1 - \eta \mu)^T)} ||x_0 - x^*||^2. \text{ (Thm 4.3)}
$$

• **Theorem 4.2–3.** Suppose f is convex and (r, ℓ) -smooth. Denote $G = ||\nabla f(x_0)||$. Choose the step size and $\eta \le \min \left\{ \frac{1}{\ell(G)} \right\}$, *r*(*G*)

- *Proof Sketch.* Apply Lemma 4.1 and the usual potential function analysis [Bansal and Gupta, 2019].
- *Remark.* Theorems above recover the classical convergence rates:
	-
	-

. Then the gradient descent iterates $(x_{t+1} = x_t - \eta \nabla(x_t))$ satisfy $||\nabla f(x_t)|| \le G$ for all $\left|\frac{X_t}{2G}\right.$ }. Then the gradient descent iterates $(x_{t+1} = x_t - \eta \, \nabla(x_t))$ satisfy $\|\nabla f(x_t)\| \leq G$ for all $t \geq 0$

► Theorem 4.2 gives $O(1/\epsilon)$ gradient complexity for convex (r, ℓ) -smooth functions to achieve $f(x_T) - f^* \leq \epsilon.$ \triangleright Theorem 4.3 gives $O((\eta\mu)^{-1} \log(1/\epsilon))$ gradient complexity for μ -strongly convex (r, ℓ) -smooth functions.

$$
f(x_T) - f^* \le \frac{\|x_0 - x^*\|^2}{2\eta T}.
$$
 (Thm 4.2)

If f is μ -strongly convex, then

$$
f(x_T) - f^* \le \frac{\mu (1 - \eta \mu)^T}{2(1 - (1 - \eta \mu)^T)} ||x_0 - x^*||^2. \text{ (Thm 4.3)}
$$

and $L = \ell(2G)$ For any $x \in \mathbb{R}^d$ satisfying $f(x) - f^* \leq F$, $G:=\sup\{u\geq 0\,|\,u^2\leq 2\ell'(2u)\cdot F\}$ and $L=\ell(2G).$ For any $x\in\mathbb{R}^d$ satisfying $f(x)-f^*\leq F$

With sub-quadratic *ℓ*

• Lemma 5.1. Suppose f is ℓ -smooth where ℓ is sub-quadratic. For any given $F \geq 0$, let define $x^+ := x - \eta \nabla f(x)$. If $\eta \leq \frac{1}{L}$, we have $f(x^+) \leq f(x)$. $x^{\dagger} := x - \eta \nabla f(x)$. If $\eta \leq \frac{1}{L}$, we have $f(x^{\dagger}) \leq f(x)$

 $G := \sup\{u \geq 0 \mid u^2 \leq 2\ell(2u) \cdot F\}$ and $L = \ell(2G)$. For any $x \in \mathbb{R}^d$ satisfying $f(x) - f^* \leq F$,

• *Proof Sketch.* By Corollary 3.6, we know $||\nabla f(x)|| \le G$. By Proposition 3.2, we know ℓ -smoothness implies $(\frac{G}{\ell(A+G)},\ell(\cdot +G))$ -smoothness. Thus, by Lemma 3.3, f is locally Lipschitz L-smooth on a *c*losed Euclidean ball with a radius G/L . Note that $||x^+ - x|| = ||\eta \nabla f(x)|| \leq \eta G \leq G/L$. Then , $\ell'(\;\cdot +G)$)-smoothness. Thus, by Lemma 3.3, f is locally Lipschitz L

With sub-quadratic *ℓ*

- Lemma 5.1. Suppose f is ℓ -smooth where ℓ is sub-quadratic. For any given $F \geq 0$, let define $x^+ := x - \eta \nabla f(x)$. If $\eta \leq \frac{1}{L}$, we have $f(x^+) \leq f(x)$.
- applying the usual descent lemma, $\ell(\cdot + G)$
	- $f(x^+) f(x) \leq \langle \nabla f \rangle$
		-

$$
\leq \left\langle \nabla f(x), x^+ - x \right\rangle + \frac{L}{2} ||x^+ - x||^2
$$

=
$$
-\eta \left(1 - \frac{\eta L}{2} \right) ||\nabla f(x)||^2 \leq 0.
$$

• **Theorem 5.2.** Suppose f is ℓ -smooth where ℓ is sub-quadratic. Let $G := \sup\{u \ge 0 | u^2 \le 2\ell(2u) \cdot (f(x_0) - f^*)\}$ and $L = \ell(2G)$. Choose the step size $\eta \leq \frac{1}{L}$. Then the gradient descent iterates $(x_{t+1} = x_t - \eta \nabla(x_t))$ satisfy $\frac{1}{L}$. Then the gradient descent iterates ($x_{t+1} = x_t - \eta \nabla(x_t)$

With sub-quadratic *ℓ*

 $||\nabla f(x_t)|| \leq G$ for all $t \geq 0$ and

- proof of Lemma 5.1, we obtain $f(x_{t+1}) f(x_t) \leq -\eta \left(1 \frac{\eta^2}{2}\right) ||\nabla f(x_t)||^2$. Taking a summation over and rearranging terms, we complete the proof.
- *Remark.* Theorem above recovers the classical convergence rates:
	- which is optimal as it matches the lower bound in Carmon et al. [2020].

1 *T T*−1 ∑ *t*=0 $\|\nabla f(x_t)\|^2 \leq$

$$
|||^{2} \leq \frac{2(f(x_{0}) - f^{*})}{\eta T}.
$$

• *Proof Sketch.* Applying Lemma 5.1 and Corollary 3.6, we obtain $f(x_t) \le f(x_0)$ and thus $||\nabla f(x_t)|| \le G$. Following the $f(x_t) \leq f(x_0)$ and thus $||\nabla f(x_t)|| \leq G$ $f(x_{t+1}) - f(x_t) \leq -\eta \left(1 - \frac{\eta L}{2}\right) \|\nabla f(x_t)\|^2.$ Taking a summation over $t = 0, \cdots, T-1$

• Theorem 5.2 gives $O(1/\epsilon^2)$ gradient complexity for (r, ℓ') -smooth functions to achieve an ϵ -stationary point,

Gradient Descent — Non-convex Setting What about non-sub-quadratic ℓ **?** ($\rho \geq 2$)

- The gradient complexity is at least exponentially large in the problem parameter.
- size η either cannot reach a 1-stationary point or takes at least $\exp(L_2F_0/8)/6$ steps to reach a 1-stationary point.
- take a piecewise logarithmic/quadratic function (which is $(2, L_0, L_2)$ -smooth, steps to reach a 1-stationary point. L_{0} $\frac{1}{2}$, taking $f(x) =$

• **Theorem 5.4.** Given $L_0, L_2, F_0, G_0 > 0$ such that $L_2 F_0 \ge 10$, for any $\eta \ge 0$, there exists a $(2, L_0, L_2)$ -smooth univariate function f , which is bounded below, and an initial point x_0 satisfying $|f'(x_0)| \le G_0$ and $f(x_0) - f^* \le F_0$, such that GD with step

• *Proof Sketch.* If $\eta > \frac{-\sigma}{2}$, taking $f(x) = \frac{-\sigma}{2}x^2$, GD will diverge. Otherwise, we carefully independent to the step-size) so that either GD gets stuck or takes exponentially many L_{0} $\frac{10}{2}x^2$

Nesterov's Accelerated Gradient Method Convex & Sub-quadratic ℓ \rightarrow Optimal $O(1/\sqrt{\epsilon})$ gradient complexity

Algorithm 1: Nesterov's Accelerated Gradient Method (NAG)

input A convex and ℓ -smooth function f, stepsize η , initial point x_0 1: **Initialize** $z_0 = x_0$, $B_0 = 0$, and $A_0 = 1/\eta$. 2: for $t = 0, ...$ do 3: $B_{t+1} = B_t + \frac{1}{2} (1 + \sqrt{4B_t + 1})$ 4: $A_{t+1} = B_{t+1} + 1/\eta$
5: $y_t = x_t + (1 - A_t/A_{t+1})(z_t - x_t)$ 6: $x_{t+1} = y_t - \eta \nabla f(y_t)$ 7: $z_{t+1} = z_t - \eta (A_{t+1} - A_t) \nabla f(y_t)$ 8: end for

G be a constant satisfying $G \ge \max \left\{ \frac{8\sqrt{\ell(2G)((f(x_0)-f^*) + ||x_0-x^*||^2}}{\ell(2G)(f(x_0)-f^*) + ||x_0-x^*||^2} \right\}$ $L = \ell(2G)$ and choose $\eta \le \min\{\frac{1}{16G}\}$ $\frac{1}{16L^2}$,

• Theorem 4.4. Suppose f is convex and ℓ -smooth where ℓ is sub-quadratic. Let be a constant satisfying $G \ge \max \left\{ \frac{8}{\sqrt{\ell}}(2G)((f(x_0)-f^*) + ||x_0 - x^*||^2), ||\nabla f(x_0)|| \right\}$. Denote and choose $\eta \le \min\{\frac{1}{1\le \eta}, \frac{1}{2L}\}\.$ The iterates generated by NAG satisfy $f(x_T) - f^* \leq \frac{f(x_T - x_T)}{nT^2 + 4}$ f is convex and ℓ -smooth where ℓ), $||\nabla f(x_0)||$ \int 1 $\frac{1}{2L}$ } $4(f(x_0) - f^*) + r||x_0 - x^*||^2$ *ηT*² + 4

Stochastic Gradient Descent

- Assumption: Stochastic gradient g_t is unbiased and has bounded variance (σ^2). g_t is unbiased and has bounded variance (σ^2
- $L = \ell(2G)$ and choose $\eta \le \min\{\frac{1}{2\eta}\}$

with probability at least $1 - \delta$, the iterates generated by SGD satisfy $\|\nabla f(x_t)\| \leq G$ for all $t < T$ and

Non-convex & Sub-quadratic *ℓ* ➡ **Optimal** *O*(1/*ϵ* **gradient complexity (w.h.p.)** ⁴)

• **Theorem 5.3.** Suppose ℓ -smooth where ℓ is sub-quadratic. For any $\delta \in (0,1)$, denote $F = 8(f(x_0) - f^* + \sigma)/\delta$ and $G = \sup\{u \ge 0 | u^2 \le 2\ell(2u) \cdot F\}$. Denote $L = \ell(2G)$ and choose $\eta \le \min\{\frac{1}{2L}, \frac{1}{2L}\}$ and $T \ge \frac{1}{2}$ for any $\epsilon > 0$. Then *F* = 8(*f*(*x*₀) − *f** + *σ*)/*δ* and *G* = sup{*u* ≥ 0 | *u*² ≤ 2 \mathcal{E} (2*u*) ⋅ *F*} $\frac{1}{2L}$ 1 $4G\sqrt{T}$ $}$ and $T \geq \frac{F}{nC}$ $\frac{1}{\eta\epsilon^2}$ for any $\epsilon>0$

> 1 *T T*−1 ∑ *t*=0

$$
\|\nabla f(x_t)\|^2 \le \epsilon^2
$$

Summary

Table 1: Summary of the results. ϵ denotes the sub-optimality gap of the function value in convex settings, and the gradient norm in non-convex settings. "*" denotes optimal rates.

Discussions

- All the results are in the form of:
	- Generalized smoothness (assumption)
	- + Bounded gradients along the trajectory (not an assumption)
	- Standard Lipschitz smoothness! Similar analyses to the classical ones!
- Generalized smoothness might give a better geometry than the standard Lipschitz smoothness.
	- If generalized smoothness can give a tighter upper bound on the Hessian norm than the Lipschitz smoothness along the trajectory, shouldn't we have gotten a better convergence rate, rather than obtaining the identical rate as the classical one?
- In the non-convex setting (sub-quadratic ℓ), (S)GD is still rate-optimal. In practice, vanilla (S)GD performs worse than methods with momentum or adaptive methods. This means either…
	- Although the rate is optimal, the hidden constants are too large, which hurts the performance in reality. • Or, generalized smoothness might not be enough.
	-

References

• Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. *Lower bounds for finding stationary points*

• Arkadij Semenovič Nemirovskij and David Borisovich Yudin. *Problem complexity and method efficiency*

- Nikhil Bansal, and Anupam Gupta. *Potential-function proofs for first-order methods*. Theory of Computing. 15: 1-32. 2019.
- *I.* Mathematical Programming, 184(1–2): 71–120, Nov 2020. ISSN 0025-5610.
- *in optimization.* Wiley-Interscience, 1983.
- Optimization under Generalized Smoothness. NeurIPS 2023.
- edition, 2018. ISBN 3319915770.
- A theoretical justification for adaptivity. ICLR 2020.

• Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and Non-convex

• Yurii Nesterov. *Lectures on Convex Optimization.* Springer Publishing Company, Incorporated, 2nd

• Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates training: