AI709 Presentation: **Convex and Non-convex Optimization** under Generalized Smoothness Haochuan Li*, Jian Qian*, Yi Tian, Alexander Rakhlin, Ali Jadbabaie **NeurIPS 2023 (Spotlight)**

Speaker: Hanseul Cho

Classical Analyses of Optimization Algorithms Under Lipschitz smoothness

• Unconstrained optimization $\min_{x \in \mathbb{R}^d} f(x)$ with first-order algorithms

Classical Analyses of Optimization Algorithms Under Lipschitz smoothness

- Unconstrained optimization $\min_{x \in \mathbb{R}^d} f(x)$ with first-order algorithms
- Classical textbook analyses [Nemirovskij and Yudin, 1983, Nesterov, 2018] • f is Lipschitz smooth with constant L: $\|\nabla^2 f(x)\| \leq L$ a.e.*

*a.e. = almost everywhere with respect to the Lebesgue measure

3/29

Classical Analyses of Optimization Algorithms Under Lipschitz smoothness

- Unconstrained optimization $\min_{x \in \mathbb{R}^d} f(x)$ with first-order algorithms
- Classical textbook analyses [Nemirovskij and Yudin, 1983, Nesterov, 2018] • f is Lipschitz smooth with constant L: $\|\nabla^2 f(x)\| \le L$ a.e.* • A consequence: $f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$ • E.g., gradient descent: $f(x_{t+1}) \le f(x_t) - \eta(1 - \eta L/2) \|\nabla f(x_t)\|^2 \le f(x_t)$

*a.e. = almost everywhere with respect to the Lebesgue measure

4/29

Does Lipschitz Smoothness Reflect Reality?

- Lipschitz smoothness is too strict!

• Violated by polynomial (deg \geq 3), rational, exponential, and logarithmic functions.

Does Lipschitz Smoothness Reflect Reality?

- Lipschitz smoothness is too strict!
- Observation in deep learning
 - of the gradient norm ($\|\nabla f(x)\|$) in deep architectures.

• Violated by polynomial (deg \geq 3), rational, exponential, and logarithmic functions.

• Zhang et al. [2020] observe that local smoothness ($\|\nabla^2 f(x)\|$) varies a lot in terms

Overview of Li et al. [2023]

• They generalize the standard Lipschitz smoothness to the ℓ -smoothness function of the gradient norm.

$$\|\nabla^2 f(x)\| \le \ell(\|\nabla f(x)\|) \quad (\ell:$$

condition: it assumes that the Hessian norm is bounded by a non-decreasing

non-decreasing, continuous function).

Overview of Li et al. [2023]

• They generalize the standard Lipschitz smoothness to the ℓ -smoothness function of the gradient norm.

$$\|\nabla^2 f(x)\| \le \ell(\|\nabla f(x)\|) \quad (\ell:$$

- convex and non-convex settings, recovering the classical rates of:
 - Gradient descent (GD);
 - Stochastic gradient descent (SGD);
 - Nesterov's accelerated gradient method (NAG).

condition: it assumes that the Hessian norm is bounded by a non-decreasing

non-decreasing, continuous function).

• They prove the convergence of constant-step-size first-order algorithms in the

Generalized Smoothness (1,2)

Definition 1 (ℓ -smoothness). A real-valued differentiable function f is ℓ -smooth for a non-decreasing continuous function $\mathscr{C}: [0, +\infty) \to (0, +\infty)$ if

 $\|\nabla^2 f(x)\| \leq \ell(\|\nabla f(x)\|)$ a.e.

Generalized Smoothness (1,2)

- **Definition 1** (ℓ -smoothness). A real-valued differentiable function f is ℓ -smooth for a non-decreasing continuous function $\ell : [0, +\infty) \to (0, +\infty)$ if $\|\nabla^2 f(x)\| \le \ell(\|\nabla f(x)\|)$ a.e.
- **Definition 2** ((r, ℓ) -smoothness). A real-valued differentiable function f is (r, ℓ) -smooth for continuous functions $r, \ell : [0, +\infty) \to (0, +\infty)$ where ℓ is non-decreasing and r is non-increasing if, for any $x \in \mathbb{R}^d$ and $x_1, x_2 \in \mathfrak{B}(x, r(\|\nabla f(x)\|))$, $\|\nabla f(x_1) - \nabla f(x_2)\| \leq \ell(\|\nabla f(x)\|) \cdot \|x_1 - x_2\|.$

* $\mathfrak{B}(x, R)$ = a closed Euclidean ball with radius R centered at x

Generalized Smoothness (1,2)

- **Definition 1** (ℓ -smoothness). A real-valued differentiable function f is ℓ -smooth for a non-decreasing continuous function $\ell : [0, +\infty) \to (0, +\infty)$ if $\|\nabla^2 f(x)\| \le \ell(\|\nabla f(x)\|)$ a.e.
- **Definition 2** ((r, ℓ) -smoothness). A real-valued differentiable function f is (r, ℓ) -smooth for continuous functions $r, \ell : [0, +\infty) \to (0, +\infty)$ where ℓ is non-decreasing and r is non-increasing if, for any $x \in \mathbb{R}^d$ and $x_1, x_2 \in \mathfrak{B}(x, r(\|\nabla f(x)\|))$, $\|\nabla f(x_1) - \nabla f(x_2)\| \leq \ell(\|\nabla f(x)\|) \cdot \|x_1 - x_2\|.$
- Proposition 3.2.

 (r, ℓ) -smooth $\Rightarrow \ell$ -smooth $\Rightarrow ($

* $\mathfrak{B}(x, R)$ = a closed Euclidean ball with radius R centered at x

$$\left(\frac{a}{\ell(\cdot+a)},\ell(\cdot+a)\right)$$
-smooth ($\forall a > 0$)

Generalized Smoothness (3) Important subset of ℓ -smoothness

- **Definition 3** ((ρ, L_0, L_ρ) -smoothness). A real-valued differentiable function f is
 - $\rho = 0$ or $L_{\rho} = 0$: standard Lipschitz smoothness.
 - $\rho = 1: (L_0, L_1)$ -smoothness [Zhang et al., 2020].

ho	0	1	1	1+	1.5	2	$\frac{p-2}{p-1}$
Functions	Quadratic	Polynomial	a^x	$a^{(b^x)}$	Rational	Logarithmic	x^p

 (ρ, L_0, L_ρ) -smooth for constants $\rho, L_0, L_\rho \ge 0$ if it is ℓ -smooth with $\ell(u) = L_0 + L_\rho u^\rho$.

Table. Examples of univariate (ρ, L_0, L_ρ) -smooth functions. The parameters a, b, p are real numbers such that a, b > 1 and $p \in (-\infty, 1) \cup [2, \infty)$. 1+ means any real number slightly larger than 1.

Properties of Generalized Smoothness (1)

• Lemma 3.3. If f is (r, ℓ) -smooth, for any $x \in \mathbb{R}^d$ satisfying $\|\nabla f(x)\| \leq G$ and any $x_1, x_2 \in \mathfrak{B}(x, r(G))$, f satisfies $\|\nabla f(x_1) - \nabla f(x_2)\| \le L \|x_1 - x_2\|$ and $f(x_1) \le f(x_2) + \langle \nabla f(x_2), x_1 - x_2 \rangle + \frac{L}{2} \|x_1 - x_2\|^2$.

Properties of Generalized Smoothness (1)

- integrals.)
- **Remark.** If we properly bound the gradient norm along the optimization trajectory, then we can recover the classical analysis established upon Lipschitz smoothness!

• Lemma 3.3. If f is (r, ℓ) -smooth, for any $x \in \mathbb{R}^d$ satisfying $\|\nabla f(x)\| \leq G$ and any $x_1, x_2 \in \mathfrak{B}(x, r(G))$, f satisfies $\|\nabla f(x_1) - \nabla f(x_2)\| \le L \|x_1 - x_2\|$ and $f(x_1) \le f(x_2) + \langle \nabla f(x_2), x_1 - x_2 \rangle + \frac{L}{2} \|x_1 - x_2\|^2$.

• Proof Sketch. Since ℓ is non-decreasing and r is non-increasing, we have $\ell(\|\nabla f(x)\|) \leq \ell(G)$ and $r(G) \leq r(\|\nabla f(x)\|)$. Thus, the first inequality holds by definition. The second inequality follows from the first one (proof: use

Properties of Generalized Smoothness (2)

- If ℓ is sub-quadratic ($\lim_{u\to\infty} \ell(u)/u^2 = 0$), bounded function values imply bounded gradient norms.
- Let $f^* = \inf_{x \in \mathbb{R}^d} f(x)$.
- then we have $\|\nabla f(x)\| \leq G := \sup\{u \geq 0 \mid u^2 \leq 2\ell(2u) \cdot F\} < \infty$.

• Corollary 3.6. Suppose f is ℓ -smooth where ℓ is sub-quadratic. If $f(x) - f^* \leq F$,

Properties of Generalized Smoothness (2)

- If ℓ is sub-quadratic ($\lim_{u\to\infty} \ell(u)/u^2 = 0$), bounded function values imply bounded gradient norms.
- Let $f^* = \inf_{x \in \mathbb{R}^d} f(x)$.
- then we have $\|\nabla f(x)\| \leq G := \sup\{u \geq 0 \mid u^2 \leq 2\ell(2u) \cdot F\} < \infty$.
- show that $\|\nabla f(x)\|^2 \le 2 \cdot \ell(2\|\nabla f(x)\|) \cdot (f(x) f^*).$
- the function values, which is usually easier!

• Corollary 3.6. Suppose f is ℓ -smooth where ℓ is sub-quadratic. If $f(x) - f^* \leq F$,

• Proof Sketch. This is a corollary of Lemma 3.5: If f is ℓ -smooth, then we can

Remark. In order to bound the gradients along the trajectory, it suffices to bound

• Lemma 4.1. For any $x \in \mathbb{R}^d$ satisfying $\|\nabla f(x)\| \leq G$, define $x^+ := x - \eta \nabla f(x)$. If f is convex and (r, ℓ) -smooth, and $\eta \leq \min\left\{\frac{2}{\ell(G)}, \frac{r(G)}{2G}\right\}$, we have $\|\nabla f(x^+)\| \leq \|\nabla f(x)\| \leq G$.

- (r, ℓ) -smooth, and $\eta \leq \min\left\{\frac{2}{\ell(G)}, \frac{r(G)}{2G}\right\}$, we have $\|\nabla f(x^+)\| \leq \|\nabla f(x)\| \leq G$.

• Proof Sketch. Recall that $\ell(\|\nabla f(x)\|) \leq \ell(G)$, $r(G) \leq r(\|\nabla f(x)\|)$. Also, we can prove that convexity and (r, ℓ) -smoothness imply the local co-coercivity: $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{1}{\ell(\|\nabla f(x)\|)} \|y - x\|^2$ for all x and $y \in \mathfrak{B}(x, r(\|\nabla f(x)\|)/2)$. Note that $\|x^+ - x\| = \|\eta \nabla f(x)\| \le \eta G \le r(G)/2$. Then by applying the local co-coercivity,

$$\begin{aligned} \|\nabla f(x^{+})\|^{2} &- \|\nabla f(x)\|^{2} = 2\langle \nabla f(x^{+}) - \nabla f(x), \nabla f(x) \rangle + \|\nabla f(x^{+}) - \nabla f(x)\|^{2} \\ &= -\frac{2}{\eta} \langle \nabla f(x^{+}) - \nabla f(x), x^{+} - x \rangle + \|\nabla f(x^{+}) - \nabla f(x)\|^{2} \\ &\leq -\left(\frac{2}{\eta \cdot \ell(\|\nabla f(x)\|)} - 1\right) \|\nabla f(x^{+}) - \nabla f(x)\|^{2} \leq 0. \end{aligned}$$

• Lemma 4.1. For any $x \in \mathbb{R}^d$ satisfying $\|\nabla f(x)\| \leq G$, define $x^+ := x - \eta \nabla f(x)$. If f is convex and

• Theorem 4.2–3. Suppose f is convex and (r, ℓ) -smooth. Denote $G = \|\nabla f(x_0)\|$. Choose the step size and

$$f(x_T) - f^* \le \frac{\|x_0 - x^*\|^2}{2\eta T}$$
. (Thm 4.2)

If f is μ -strongly convex, then

$$f(x_T) - f^* \le \frac{\mu (1 - \eta \mu)^T}{2(1 - (1 - \eta \mu)^T)} \|x_0 - x^*\|^2.$$
 (Thm 4.3)

• Proof Sketch. Apply Lemma 4.1 and the usual potential function analysis [Bansal and Gupta, 2019].

 $\eta \leq \min\left\{\frac{1}{\ell(G)}, \frac{r(G)}{2G}\right\}$. Then the gradient descent iterates $(x_{t+1} = x_t - \eta \nabla(x_t))$ satisfy $\|\nabla f(x_t)\| \leq G$ for all $t \geq 0$

• Theorem 4.2–3. Suppose f is convex and (r, ℓ) -smooth. Denote $G = \|\nabla f(x_0)\|$. Choose the step size and

$$f(x_T) - f^* \le \frac{\|x_0 - x^*\|^2}{2\eta T}$$
. (Thm 4.2)

If f is μ -strongly convex, then

$$f(x_T) - f^* \le \frac{\mu (1 - \eta \mu)^T}{2(1 - (1 - \eta \mu)^T)} \|x_0 - x^*\|^2.$$
 (Thm 4.3)

- Proof Sketch. Apply Lemma 4.1 and the usual potential function analysis [Bansal and Gupta, 2019].
- **Remark.** Theorems above recover the classical convergence rates:

 $\eta \leq \min\left\{\frac{1}{\ell(G)}, \frac{r(G)}{2G}\right\}$. Then the gradient descent iterates $(x_{t+1} = x_t - \eta \nabla(x_t))$ satisfy $\|\nabla f(x_t)\| \leq G$ for all $t \geq 0$

• Theorem 4.2 gives $O(1/\epsilon)$ gradient complexity for convex (r, ℓ) -smooth functions to achieve $f(x_T) - f^* \leq \epsilon$. • Theorem 4.3 gives $O((\eta\mu)^{-1}\log(1/\epsilon))$ gradient complexity for μ -strongly convex (r, ℓ) -smooth functions.

With sub-quadratic ℓ

• Lemma 5.1. Suppose f is ℓ -smooth where ℓ is sub-quadratic. For any given $F \ge 0$, let

Gradient Descent – Non-convex Setting

 $G := \sup\{u \ge 0 \mid u^2 \le 2\ell(2u) \cdot F\} \text{ and } L = \ell(2G). \text{ For any } x \in \mathbb{R}^d \text{ satisfying } f(x) - f^* \le F, \text{ define } x^+ := x - \eta \nabla f(x). \text{ If } \eta \le \frac{1}{L}, \text{ we have } f(x^+) \le f(x).$

With sub-quadratic ℓ

- Lemma 5.1. Suppose f is ℓ -smooth where ℓ is sub-quadratic. For any given $F \ge 0$, let define $x^+ := x - \eta \nabla f(x)$. If $\eta \leq \frac{1}{r}$, we have $f(x^+) \leq f(x)$.
- applying the usual descent lemma,
 - $f(x^+) f(x) \le \langle \nabla f$

Gradient Descent – Non-convex Setting

 $G := \sup\{u \ge 0 \mid u^2 \le 2\ell(2u) \cdot F\} \text{ and } L = \ell(2G). \text{ For any } x \in \mathbb{R}^d \text{ satisfying } f(x) - f^* \le F,$

• Proof Sketch. By Corollary 3.6, we know $\|\nabla f(x)\| \leq G$. By Proposition 3.2, we know ℓ -smoothness implies $(\frac{G}{\ell(\cdot+G)}, \ell(\cdot+G))$ -smoothness. Thus, by Lemma 3.3, f is locally Lipschitz L-smooth on a closed Euclidean ball with a radius G/L. Note that $||x^+ - x|| = ||\eta \nabla f(x)|| \le \eta G \le G/L$. Then

$$\hat{f}(x), x^{+} - x \rangle + \frac{L}{2} ||x^{+} - x||^{2}$$
$$\left(1 - \frac{\eta L}{2}\right) ||\nabla f(x)||^{2} \le 0.$$

With sub-quadratic ℓ

 $\|\nabla f(x_t)\| \leq G$ for all $t \geq 0$ and

 $\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x_t)\|$

- and rearranging terms, we complete the proof.
- **Remark.** Theorem above recovers the classical convergence rates:
 - which is optimal as it matches the lower bound in Carmon et al. [2020].

Gradient Descent – Non-convex Setting

• Theorem 5.2. Suppose f is ℓ -smooth where ℓ is sub-quadratic. Let $G := \sup\{u \ge 0 \mid u^2 \le 2\ell(2u) \cdot (f(x_0) - f^*)\}$ and $L = \ell(2G)$. Choose the step size $\eta \leq \frac{1}{L}$. Then the gradient descent iterates $(x_{t+1} = x_t - \eta \nabla(x_t))$ satisfy

$$\|\|^{2} \leq \frac{2(f(x_{0}) - f^{*})}{\eta T}.$$

• Proof Sketch. Applying Lemma 5.1 and Corollary 3.6, we obtain $f(x_t) \le f(x_0)$ and thus $\|\nabla f(x_t)\| \le G$. Following the proof of Lemma 5.1, we obtain $f(x_{t+1}) - f(x_t) \le -\eta \left(1 - \frac{\eta L}{2}\right) \|\nabla f(x_t)\|^2$. Taking a summation over $t = 0, \dots, T-1$

• Theorem 5.2 gives $O(1/\epsilon^2)$ gradient complexity for (r, ℓ) -smooth functions to achieve an ϵ -stationary point,

Gradient Descent – Non-convex Setting What about non-sub-quadratic ℓ ? ($\rho \ge 2$)

- The gradient complexity is at least exponentially large in the problem parameter.
- to reach a 1-stationary point.
- take a piecewise logarithmic/quadratic function (which is $(2,L_0,L_2)$ -smooth, steps to reach a 1-stationary point.

• Theorem 5.4. Given $L_0, L_2, F_0, G_0 > 0$ such that $L_2F_0 \ge 10$, for any $\eta \ge 0$, there exists a $(2, L_0, L_2)$ -smooth univariate function f, which is bounded below, and an initial point x_0 satisfying $|f'(x_0)| \leq G_0$ and $f(x_0) - f^* \leq F_0$, such that GD with step size η either cannot reach a 1-stationary point or takes at least $\exp(L_2F_0/8)/6$ steps

• Proof Sketch. If $\eta > \frac{L_0}{2}$, taking $f(x) = \frac{L_0}{2}x^2$, GD will diverge. Otherwise, we carefully independent to the step-size) so that either GD gets stuck or takes exponentially many

Nesterov's Accelerated Gradient Method Convex & Sub-quadratic $\mathscr{C} \rightarrow \text{Optimal } O(1/\sqrt{\epsilon})$ gradient complexity

Algorithm 1: Nesterov's Accelerated Gradient Method (NAG)

input A convex and ℓ -smooth function f, stepsize η , initial point x_0 1: Initialize $z_0 = x_0$, $B_0 = 0$, and $A_0 = 1/\eta$. 2: for t = 0, ... do 3: $B_{t+1} = B_t + \frac{1}{2} \left(1 + \sqrt{4B_t + 1} \right)$ 4: $A_{t+1} = B_{t+1} + 1/\eta$ 5: $y_t = x_t + (1 - A_t/A_{t+1})(z_t - x_t)$ 6: $x_{t+1} = y_t - \eta \nabla f(y_t)$ 7: $z_{t+1} = z_t - \eta (A_{t+1} - A_t) \nabla f(y_t)$ 8: **end for**

• Theorem 4.4. Suppose f is convex and ℓ -smooth where ℓ is sub-quadratic. Let G be a constant satisfying $G \ge \max\left\{8\sqrt{\ell(2G)((f(x_0) - f^*) + ||x_0 - x^*||^2)}, ||\nabla f(x_0)||\right\}$. Denote $L = \ell(2G)$ and choose $\eta \le \min\{\frac{1}{16L^2}, \frac{1}{2L}\}$. The iterates generated by NAG satisfy $f(x_T) - f^* \le \frac{4(f(x_0) - f^*) + r \|x_0 - x^*\|^2}{nT^2 + 4}.$

Stochastic Gradient Descent

- Assumption: Stochastic gradient g_t is unbiased and has bounded variance (σ^2).

with probability at least $1 - \delta$, the iterates generated by SGD satisfy $\|\nabla f(x_t)\| \leq G$ for all t < T and

> $\frac{1}{2} \sum_{i=1}^{I-1} ||_{i}$ t=0

Non-convex & Sub-quadratic $\mathscr{C} \rightarrow \text{Optimal } O(1/\epsilon^4)$ gradient complexity (w.h.p.)

• Theorem 5.3. Suppose ℓ -smooth where ℓ is sub-quadratic. For any $\delta \in (0,1)$, denote $F = 8(f(x_0) - f^* + \sigma)/\delta$ and $G = \sup\{u \ge 0 | u^2 \le 2\ell(2u) \cdot F\}$. Denote $L = \ell(2G)$ and choose $\eta \le \min\{\frac{1}{2L}, \frac{1}{4G\sqrt{T}}\}$ and $T \ge \frac{F}{\eta\epsilon^2}$ for any $\epsilon > 0$. Then

$$\nabla f(x_t) \|^2 \le \epsilon^2$$

Summary

Table 1: Summary of the results. ϵ denotes the sub-optimality gap of the function value in convex settings, and the gradient norm in non-convex settings. "*" denotes optimal rates.

Method	Convexity	ℓ -smoothness	Gradient complexity	
GD	Strongly convex Convex	No requirement	$\mathcal{O}(\log(1/\epsilon))$ (Theorem 4.3) $\mathcal{O}(1/\epsilon)$ (Theorem 4.2)	
	Non-convey	Sub-quadratic ℓ	$\mathcal{O}(1/\epsilon^2)^*$ (Theorem 5.2)	
	INOII-COIIVEX	Quadratic <i>l</i>	$\Omega(\exp. in \text{ cond } \#)$ (Theorem 5.4)	
NAG	Convex	Sub-quadratic ℓ	$\mathcal{O}(1/\sqrt{\epsilon})^*$ (Theorem 4.4)	
SGD	Non-convex	Sub-quadratic ℓ	$\mathcal{O}(1/\epsilon^4)^*$ (Theorem 5.3)	

Discussions

- All the results are in the form of:
 - Generalized smoothness (assumption)
 - + Bounded gradients along the trajectory (not an assumption)
 - Standard Lipschitz smoothness! Similar analyses to the classical ones!
- Generalized smoothness might give a better geometry than the standard Lipschitz smoothness.
 - If generalized smoothness can give a tighter upper bound on the Hessian norm than the Lipschitz smoothness along the trajectory, shouldn't we have gotten a better convergence rate, rather than obtaining the identical rate as the classical one?
- In the non-convex setting (sub-quadratic ℓ), (S)GD is still rate-optimal. In practice, vanilla (S)GD performs worse than methods with momentum or adaptive methods. This means either...
 - Although the rate is optimal, the hidden constants are too large, which hurts the performance in reality. Or, generalized smoothness might not be enough.

References

- Nikhil Bansal, and Anupam Gupta. *Potential-function proofs for first-order methods*. Theory of Computing. 15: 1-32. 2019.
- *I.* Mathematical Programming, 184(1–2): 71–120, Nov 2020. ISSN 0025-5610.
- in optimization. Wiley-Interscience, 1983.
- **Optimization under Generalized Smoothness.** NeurIPS 2023.
- edition, 2018. ISBN 3319915770.
- A theoretical justification for adaptivity. ICLR 2020.

• Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary points

• Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method efficiency

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and Non-convex

• Yurii Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2nd

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates training: