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AN OVERVIEW ON OPTIMAL TRANSPORT AND ITS
APPLICATION TO MODEL FUSION

HANSEUL CHO∗

Abstract. In this report, we briefly overview the theory of optimal transport
(OT), entropically regularized OT and Sinkhorn algorithm, and their application
to deep learning model fusion technique. For the theory of OT, we delve into
the derivation of dual OT problem and the proof of no duality gap result (i.e.,
strong duality). Through the lens of duality, we can analyze the entropic OT
and its dual problem, and derive Sinkhorn algorithm. We then provide a short
survey of convergence results of Sinkhorn algorithm and its variants. Lastly,
we turn our attention to model fusion, which combine the power of several
differently trained deep learning models (i.e., neural networks) into a single
powerful model. We illustrate OTfusion, a method of aggregating several
neural networks via optimal transport, and we offer a short discussion of further
application of it.

1. Preliminaries

1.1. Notation. Let µ and ν be probability measures on X and Y, respectively,
i.e.,

∫
X dµ =

∫
Y dν = 1. We denote the set of transport plans between µ and ν

as Π(µ, ν) ≜
{
π : X × Y → [0,∞]

∣∣∣ ∫Y dπ = µ,
∫
X dπ = ν

}
. A push-forward of a

measure µ by a mapping f is denoted and defined as f#µ ≜ µ ◦ f−1. Given a
normed vector space E , we denote E∗ ≜ {L : E → R | linear and continuous} be
its dual space. Given a function ϕ : E → R ∪ {+∞} with ϕ ̸≡ ∞, the Legendre-
Fenchel transform of ϕ is a function ϕ∗ defined on E by the formula ϕ∗(z∗) ≜
supz∈E ⟨z∗, z⟩ − ϕ(z).

1.2. Optimal Transport Problem. Let µ, ν, and a cost function c(x, y) ≥ 0
defined on X × Y be given. An optimal transport (OT) problem, also called Monge-
Kantorovich problem, is described as follows:

OT(µ, ν; c) := inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y),

or equivalently,

OT(µ, ν; c) := inf

∫
X×Y

c(x, y) dπ(x, y)

s.t.
∫
Y

dπ = µ,

∫
X

dπ = ν, π ≥ 0.

(OT)

In general, this is an infinite-dimensional linear programming (LP) problem. In a
discrete setting, however, it reduces to a finite-dimensional LP. Consider discrete
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probability measures µ =
∑m
i=1 µiδ{x(i)} and ν =

∑n
j=1 νjδ{y(j)} and corresponding

cost values (cij). Then,

OT(µ, ν; c) = min

m∑
i=1

n∑
j=1

cijπij s.t.
n∑
j=1

πij = µi,

m∑
i=1

πij = νi, πij ≥ 0.(1.1)

Equipped with a natural topology (called weak-∗ topology) for measures, the
set of probability measures is guaranteed to be compact, thereby the existence of
optimal solution π∗ of OT(µ, ν; c) (called optimal transport plan) is ensured.

1.3. Wasserstein Distance and Wasserstein Barycenters. If the spaces X
and Y are Euclidean spaces of the same dimension, i.e., X = Y = Rd, and the cost
function is composed with a metric D over Rd, OT naturally induces a distance
between probability measures. Specifically, the p-Wasserstein distance is defined as

Wp(µ, ν) ≜ OT(µ, ν;D(·, ·)p)1/p.
Given the definition of distance between probability measures, we can also establish
a notion of average between measures. In particular, a Wasserstein barycenter of
given K measures µ1, . . . , µK , induced by Wp, is also a probability measure, defined
as

Bp(µ1, . . . , µK) = argmin
ν

K∑
k=1

ωkWp(µk, ν)
p,

where the weights ωk’s are known.

2. Duality of Optimal Transport

2.1. Derivation of Dual Problem. In this section, we derive the dual problem
with respect to (OT) as a primal problem.

Consider functions ϕ(x), ψ(y), and ρ(x, y) defined on X , Y, and X × Y where
ρ ≥ 0. For a measure π defined on X × Y, define

Pϕ,ψ,ρ(π) ≜
∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y)−

∫
X×Y

(ϕ(x) + ψ(y) + ρ(x, y)) dπ(x, y).

Then if we let

F (ϕ, ψ, ρ) ≜ inf
π

∫
X×Y

c(x, y)dπ(x, y) + Pϕ,ψ,ρ(π),

we have F (ϕ, ψ, ρ) ≤ OT(µ, ν). Thus,

D(µ, ν; c) ≜ sup
ϕ,ψ,ρ: ρ≥0

F (ϕ, ψ, ρ) ≤ OT(µ, ν; c).

Note that

F (ϕ, ψ, ρ) =


∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y) if c ≡ ϕ+ ψ + ρ,

−∞ otherwise.

Thus, we arrive at the dual problem of (OT) as follows:

D(µ, ν; c) = sup
ϕ,ψ

∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y) s.t. ϕ(x) + ψ(y) ≤ c(x, y).

(OT-dual)
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Naturally, as noted before, the following relationship holds: (OT-dual)≤(OT).
This relationship is called weak duality. At first glance, there seems to be a certain
amount of duality gap between (OT-dual) and (OT). Surprisingly, as will be shown
in the subsequent section, the duality gap is in fact zero under some assumptions.

2.2. No Duality Gap. For a finite-dimensional OT problem, it has been well-
studied that there is no duality gap, due to the theory of LP. To study (possibly)
infinite-dimensional problems, we need to bring some tools from functional analysis.
To make the discussion succinct, let us introduce assumptions that X and Y are
compact metric spaces and the cost function c is continuous. Also, we will consider
the following problem with stronger constraints:

D̃(µ, ν; c) = sup
ϕ,ψ

∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y) s.t. ϕ+ ψ ≤ c, ϕ ∈ C(X ), ψ ∈ C(Y).

Note that D̃(µ, ν; c) ≤ D(µ, ν; c) ≤ OT (µ, ν; c), where the second inequality is due
to weak duality.

Lemma 2.1 (Fenchel-Rockafellar duality). Let E be a normed vector space, E∗ its
topological dual space, and. Θ, Ξ two convex functions on E with values in R∪ {∞}.
Let Θ∗, Ξ∗ be the Legendre-Fenchel transforms of Θ, Ξ respectively. Assume that
there exists z0 ∈ E such that

Θ(z0) <∞, Ξ(z0) <∞, and Θ is continuous at z0.

Then,

inf
z∈E

[Θ(z) + Ξ(z)] = max
z∗∈E∗

[−Θ∗(−z∗)− Ξ∗(z∗)] .

With this duality theorem, we can prove the following strong duality result. In
contrast to the lecture note, the following proof will contain as much details as
possible. We remark that the plot of the proof is almost taken (but not exactly
copied) from Villani [2021].

Theorem 2.2. Assume that X and Y are compact normed spaces and the cost
function c is continuous. Then,

D̃(µ, ν; c) = D(µ, ν; c) = OT (µ, ν; c).

As a result, the duality gap is zero.

Proof. Let E = C(X×Y) be the set of all (bounded) continuous real-valued functions
on X ×Y . Because of compactness, by Riesz representation theorem, its topological
dual space E∗ us the space of (regular) Radon measures on X × Y.

To apply Fenchel-Rockafellar duality, we introduce functions of functions: for
u ∈ E ,

Θ(u) =

{
0 if u(x, y) ≥ −c(x, y),
∞ otherwise,

Ξ(u) =


∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y) if u(x, y) = ϕ(x) + ψ(y) for some ϕ ∈ C(X ), ψ ∈ C(Y),

∞ otherwise.



4 HANSEUL CHO

Note that Ξ is a well-defined function, since µ and ν are probability measures: if
ϕ(x) +ψ(y) = ϕ̃(x) + ψ̃(y), s := ϕ− ϕ̃ = ψ̃−ψ must be a constant function. Hence,∫

X

(
ϕ− ϕ̃

)
dµ =

∫
X
sdµ = s =

∫
Y
sdν =

∫
Y

(
ψ̃ − ψ

)
dν,

and thus
∫
X ϕdµ+

∫
Y ψdν =

∫
X ϕ̃dµ+

∫
Y ψ̃dν.

Also, note that Θ and Ξ are convex. The convexity of Θ naturally follows from
the fact that its domain is a convex subset of E . On the other hand, the convexity
of Ξ can be proved via showing that Ξ is linear on its domain.

Lastly, the assumptions of Fenchel-Rockafellar duality holds with z0 ≡ 1. Since
c ≥ 0, Θ(z0) = 0 < ∞. Also, Θ is constant on its domain, so it is continuous
at z0. Besides, we can check Ξ(z0) = 1 < ∞. Therefore, now we can apply
Fenchel-Rockafellar duality:

inf
u∈E

[Θ(u) + Ξ(u)] = sup
π∈E∗

[−Θ∗(−π)− Ξ∗(π)] .

Let us reckon both sides. For the left-hand side,

inf
u∈E

[Θ(u) + Ξ(u)]

= inf
ϕ∈C(X ), ψ∈C(Y)

{∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y); ϕ(x) + ψ(y) ≥ −c(x, y)

}
= − sup

ϕ∈C(X ), ψ∈C(Y)

{∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y); ϕ(x) + ψ(y) ≤ c(x, y)

}
= −D̃(x, y; c).

To compute the right-hand side, we need Fenchel-Legendre transform of Θ and Ξ.
First,

Θ∗(−π) = sup
u∈E,u≥−c

∫
u(−dπ) = sup

u∈E,u≤c

∫
udπ =


∫
c dπ if π ≥ 0,

∞ otherwise,

because if π is not non-negative, then there exists a function v ∈ C(X × Y) such
that v ≤ 0 and

∫
vdπ > 0; scaling v yields the supremum infinity. With a similar

logic, one can show that

Ξ∗(π) = sup
u∈E,u(x,y)=ϕ(x)+ψ(y)

∫
udπ −

(∫
ϕdµ+

∫
ψdν

)
=

{
0 if π has marginals µ and ν,
∞ otherwise.

We therefore get

sup
π∈E∗

[−Θ∗(−π)− Ξ∗(π)] = sup
π∈Π(µ,ν)

(
−
∫
c dπ

)
= − inf

π∈Π(µ,ν)

∫
c dπ = −OT(µ, ν; c).

This proves the desired result, because of weak duality. □
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3. Fast Optimal Transport

Now we turn our attention to the efficient computation of (OT). In fact, we are
interested in its finite-dimensional version (1.1).

It is known that the computational complexity of solving LP is polynomial in
the number of variables, because of inevitable matrix-matrix products [Cohen et al.,
2021, van den Brand, 2020]. This makes solving the OT problem computationally
infeasible if the size (number of variables/constraints) of LP is huge. We will
particularly get closer to the entropic regularization technique, proposed and studied
by Marco Cuturi, Gabriel Peyré, and many other researchers [Cuturi, 2013, Peyré
et al., 2017]. With this “slightly perturbed” formulation of the OT problem, we can
have exponentially fast convergence to the (yet approximate, but unique!) solution
thanks to the power of the Sinkhorn algorithm (or its variants).

3.1. Entropic Regularization. Let us delve into the entropically regularized
optimal transport problem. Recall that we are considering the discrete probability
measures µ =

∑m
i=1 µiδ{xi} and ν =

∑n
j=1 νjδ{yj} and corresponding cost values

(cij). For a small hyperparameter ϵ > 0, the entropic OT problem is stated as

OTϵ(µ, ν; c) := inf
π∈Π(µ,ν)

m∑
i=1

n∑
j=1

cijπij − ϵ S(π),(EOT)

where S(π) = −
∑m
i=1

∑n
j=1 πij(log πij − 1), with the convention that 0 log 0 = 0.

This problem is no longer an LP but a convex programming. In particular, the
objective function is an ϵ-strongly convex function because S(π) is 1-strongly concave,
so the problem has a unique solution.

3.2. Dual of Entorpic OT. To study the entropic OT, which is a slightly perturbed
problem of original OT, it is natural to study its dual. Let us first derive the dual
entropic OT problem.

Writing the Lagrangian, for ϕi, ψj ∈ R and ρij ∈ [0,∞) (i ∈ [m], j ∈ [n]),

L(π, ϕ, ψ, ρ) :=
m∑
i=1

n∑
j=1

(cij − ρij)πij + ϵS(π) +

m∑
i=1

ϕi

µi − n∑
j=1

πij

+

n∑
j=1

ψj

(
νj −

m∑
i=1

πij

)

=

m∑
i=1

n∑
j=1

{cij − ϕi − ψj − ρij + ϵ(log πij − 1)}πij +
m∑
i=1

ϕiµi +

n∑
j=1

ψjνj .

Note that the function h(s) = (C + ϵ(log s − 1))s has the unique minimum
−ϵ exp(−C/ϵ) at s = exp(−C/ϵ). Using this fact, we can compute the Lagrangian
dual

g(ϕ, ψ, ρ) = min
π

L(π, ϕ, ψ, ρ)

= −ϵ
m∑
i=1

n∑
j=1

exp

(
−cij − ϕi − ψj − ρij

ϵ

)
+

m∑
i=1

ϕiµi +

n∑
j=1

ψjνj
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We finally get the dual problem by maximizing g: Dϵ(µ, ν) := supϕ,ψ,ρ:ρ≥0 g(ϕ, ψ, ρ),
and thus

Dϵ(µ, ν; c) = sup
ϕ,ψ

G(ϕ, ψ) :=
m∑
i=1

ϕiµi +

n∑
j=1

ψjνj − ϵ

m∑
i=1

n∑
j=1

exp

(
−cij − ϕi − ψj

ϵ

) ,

(EOT-dual)

since the optimal ρ is zero among ρ ≥ 0. Note that, it is easy to verify that
Dϵ(µ, ν; c) ≤ OTϵ(µ, ν; c), since supϕ,ψ,ρ:ρ≥0 infπ L(π, ϕ, ψ, ρ) ≤ infπ supϕ,ψ,ρ:ρ≥0 L(π, ϕ, ψ, ρ)
(weak duality).

To seek a dual optimum (ϕϵ, ψϵ), we now can use partial derivatives: where
G(ϕ, ψ) is defined in Equation (EOT-dual),

∂

∂ϕi
G(ϕ, ψ) = µi −

n∑
j=1

exp

(
−cij − ϕi − ψj

ϵ

)
= 0,

∂

∂ψj
G(ϕ, ψ) = νj −

m∑
i=1

exp

(
−cij − ϕi − ψj

ϵ

)
= 0.

(3.1)

Thus, (ϕϵ, ψϵ) is the dual optimum if and only if

πϵ :=

(
exp

(
−1

ϵ

[
cij − ϕϵi − ψϵj

]))
ij

(3.2)

belongs to Π(µ, ν). Interestingly, if we plug in π = πϵ to the objective function of
the problem (EOT), we get

m∑
i=1

n∑
j=1

cijπ
ϵ
ij − ϵ S(πϵ) = G(ϕϵ, ψϵ).

In this case, the primal and the dual matches. Thus, if we have a pair of dual
optimal variables, they directly determines the primal optimal solution πϵ. This is
the main motivation of the Sinkhorn algorithm.

One last remark is that the dual optimal point is not necessarily unique; instead,
they are unique up to additive constants. Namely, if (ϕϵ, ψϵ) is a dual optimal point,
then (ϕ̃ϵ, ψ̃ϵ) := (ϕϵ + a, ψϵ − a) is also dual optimal, for any constant vector a.

3.3. Sinkhorn Algorithm. To illustrate Sinkhorn algorithm for approximately
solving entropic OT problem, recall that we aim to find (ϕ, ψ) satisfying (3.1).
Instead of finding (ϕ, ψ), consider (u, v) such that ui = exp(ϕi/ϵ) and vj = exp(ψj/ϵ).
Then, Equation (3.1) can be written as

µi = ui

n∑
j=1

exp
(
−cij
ϵ

)
vj , νj = vj

m∑
i=1

exp
(
−cij
ϵ

)
ui.

If we define the matrix K = [Kij ] :=
[
exp

(
− cij

ϵ

)]
, the equations above can be

rewritten as the following matrix-vector calculations, where the division is calculated
elementwise.

u =
µ

Kv
, v =

ν

K⊤u
.
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Thus, the solution (u, v) is the fixed point of the mapping (u, v) 7→
(
µ
Kv ,

ν
K⊤u

)
. To

find such a point, theoretically, any kinds of fixed point algorithms can be applied.
The Sinkhorn algorithm proposes one of the simplest method of such.

u(ℓ+1) =
µ

Kv(ℓ)
, v(ℓ+1) =

ν

K⊤u(ℓ+1)
(Sinkhorn)

In the rest of the section, we will breifly look into the global convergence of
Sinkhorn algorithm. The following theorem is excerpted and simplified from Peyré
et al. [2017] (see references therein).

Theorem 3.1 (Theorem 4.2, Peyré et al. [2017]). Denote π(ℓ) as π(ℓ)
ij ≜ u

(ℓ)
i Kijv

(ℓ)
j .

Then, one has ∥∥∥log(π(ℓ))− log(πϵ)
∥∥∥
∞

= O

(√η(K)− 1√
η(K) + 1

)2ℓ
 ,

where η(K) = max
i,j,k,l

KikKjl

KjkKil
≥ 1.

The theorem states that the Sinkhorn algorithm converges exponentially fast
to the unique minimum of the primal problem (EOT). One caveat is that it does
not necessarily implies the exponential convergence to a solution of the original
OT; only the sublinear (slower than exponential) convergence is guaranteed with
small non-decaying values of ϵ [Altschuler et al., 2017, Dvurechensky et al., 2018].
Adaptive scheduling (e.g., adaptively halving ϵ) can make Sinkhorn algorithm achieve
exponential convergence to the original OT [Chen et al., 2023].

4. Model Fusion via Discrete Optimal Transport

In this section, we introduce the concept of aggregation of deep learning models
and recent advances in this field using discrete optimal transport.

4.1. Model Fusion. In practice, there are several well-trained machine learning
models, even for each of tasks. Can we empower our prediction capability by
combining the capabilities of several models? If can, how?

Ensemble methods are the most common approach to do such a task, which
combine the outputs of different models for better test-time performance and
robustness of the prediction. Despite of the practical benefits of ensemble methods,
they requires storing K different models and running each of them, thereby the
memory and computation cost scales with the number of models. If each model is
huge (and typically larger models perform better), this becomes quickly infeasible
to apply.

A clever detour is the model fusion: combine the model weights/parameters into
a single model. For the sake of simplicity, assume that the models have similar
architectures (e.g., having the same number of hidden layers, or the same ‘depth’).
The simplest way of combining several models is direct weight average; we call it
VanillaFusion. Although it is easy to apply, it has two main weaknesses. First, it
is applicable only when the model architectures are identical (though each of the
weight values may be different). Second, in practice, the prediction performance
is poor. This is mainly because there is no one-to-one correspondence of weights
between two distinct models, especially for neural networks, even if their prediction
performance would be similar.
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Figure 1. Model Fusion Procedure of OTfusion.

Figure 2. OTfusion v.s. VanillaFusion: One-shot skill
transfer performance when the model A and B are fused in
varying proportions.

4.2. OTfusion: Model Fusion via Optimal Transport. One can borrow
the power of optimal transport to cleverly fuse several differently trained neural
networks. For simplicity, we consider fusion of two models A and B, and we assume
that the models have the same number of hidden layers (same depth), but each
of hidden layers might have different number of neurons (different width). Then,
we can apply OT to “align” the neurons and weights of different neural networks
and then the networks can be directly averaged. Note that this method called
OTfusion [Singh and Jaggi, 2020] works layer-wise: the model averaging is applied
after performing (soft) alignment via OT layer by layer.

The crux of the mechanism hidden in OTfusion is that we would like to aggregate
neurons or weights that have similar roles. If we average two arbitrarily different
neurons, their effect would be averaged out. To avoid this phenomenon, appropriate
alignment between neurons in different networks is important. To this end, fix a
layer ℓ and consider a transportation cost between neurons or weights of that layer
in each of models A and B. Fix the model B, and consider the scenario that we
re-align the weights in the model A. If we carefully design the way of transporting
the weights of the layer ℓ in model A to those in model B, we have the same size of
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weight matrices, and therefore they can be averaged. The detailed mechanism is
illustrated in Singh and Jaggi [2020].

The empirical result is promising. To simulate the model fusion, Singh and
Jaggi [2020] train the two fully-connected neural networks A and B with identical
structure on a couple of distinct chunks (data chunk A for model A, chunk B for
model B) of MNIST digit classification dataset. Then, by fusing two models with
VanillaFusion and OTfusion, they observe how well the skill transfers from
model A to B. The result is shown in Figure 2. While the performance of vanilla-
fused models are degraded, the performance degradation is much less for OTfusion.
Somewhat surprisingly, some OT-fused models outperform the individual models
A and B. This suggests that a combined model through OT may have multiple
capabilities that each of individual models possesses.

Recently, Imfeld et al. [2023] carefully applied the techniques from OTfusion to
aggregate renowned Transformer models [Vaswani et al., 2017]. In their application,
Sinkhorn algorithm is the main workhorse to achieve promising performances, which
is different from original OTfusion paper where they utilized exact OT solver.

5. Conclusion

We discussed various aspects related to optimal transport, including duality
theory, entropic regularization and the Sinkhorn algorithm, and their application to
model fusion. Specifically regarding model fusion, we did not delve deeply into the
technical intricacies of OTfusion because there is no theoretical assurance that it
represents an optimal weight transportation.

Numerous avenues for future research in model fusion plus optimal transport exist.
First, there is a lack of theoretical understanding regarding the optimal or most
efficient fusion methods and their underlying mechanisms. Exploring more effective
ways to fuse models using optimal transport would be intriguing. Additionally, a
more profound theoretical exploration of model fusion is necessary. Second, the
applicability of OTfusion is restricted to cases where two models share the same
architecture and depth. Investigating methods for fusing models not only in the
weight space but also in the function space could be valuable, allowing the fusion
of models with entirely different structures. Third, creating a multi-lingual large
language model by fusing several uni-lingual (i.e., single-language) language models
without any fine-tuning could be a promising area of study, with optimal transport
serving as a crucial tool in the design process.
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