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Fair learning

Algorithmic bias is problematic, especially in socio-technical systems
▶ e.g., Medical AI (health risk assessment)—severity of black patients is

often underestimated [Obermeyer et al., 2019]
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Desiderata in Fair ML

1 Fair: no disparities in different demographics
▶ No unified definition; several (possibly conflicting) notions of fairness
▶ Trivially fair decision can be non-informative; e.g., flipping coin.

2 Informative: learning the utility of the data (≒ accuracy)
▶ “Fairness-accuracy trade-off”: fairness regarded as a constraint

Can these two be achieved simultaneously?

▶ Depending on fairness notions.
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Problem Setting

Binary classification on a dataset with multiple subgroups
▶ Underlying distribution: D(X,Y,A)
▶ Input X ∈ X , label Y ∈ Y = {0, 1}
▶ Sensitive attribute A ∈ A (scalar, discrete)
▶ Predictor: a real-valued function f : X → [0, 1]

⋆ Bayesian framework: we want to learn posterior distribution f̃ ∼ Q
with a randomized algorithm

⋆ Inference: f(X) = Ef̃∼Q[f̃(X)]
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Group Fairness

In real world, sensitive attribute (or subgroup index) A often have
more than two (or even many) elements.

▶ Race (black, white, Asian, Latino, ...)
▶ Gender (male, female, others/not responded)
▶ Religion (Christian, Jewish, Muslim, Buddhist, ...)
▶ Nationality
▶ Individual customers ...

Caveat: ‘fairness on multiple subgroups’ ̸= ‘multi-group fairness’
▶ Group fairness (A ∈ A is a scalar): considering only a single axis of

groups which is not necessarily binary → today’s setting
▶ Multi-group fairness (A ∈ A is a vector): multiple axes of dividing

groups1 [Yang et al., 2020, Kang et al., 2021, Alghamdi et al., 2022]

1e.g., (x1, y1,male, black), (x2, y2, female,white), (x3, y3,male,white)...
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Several definitions of group fairness

Demographic parity2 (DP): E[f(X)] = E[f(X)|A]
▶ “Prediction scores must be equal across subgroups”

Equalized odds (EO or EOD): E[f(X)|Y ] = E[f(X)|Y,A]
▶ “Given a label Y , prediction scores must be equal across subgroups”

Group Sufficiency: E[Y |f(X)] = E[Y |f(X), A]
▶ “Given a score f(X) = τ , labels must be equal across subgroups”

Remarks: when A and Y are not completely independent...

DP/EO based criteria suffers from the fairness-accuracy trade-off
[Song et al., 2019, Dutta et al., 2020, Wang et al., 2021].

Group sufficiency and DP/EO cannot hold simultaneously
[Chouldechova, 2017, Pleiss et al., 2017, Barocas et al., 2019].

2Also known as ‘statistical parity’ or ‘independence rule’
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Fairness violation “gaps”

Violation of DP → indf := EA,X [|E[f(X)]− E[f(X)|A]|]
Violation of EO → sepf := EA,X [|E[f(X)|Y ]− E[f(X)|Y,A]|]
Group Sufficiency gap: Suff := EA,X [|E[Y |f(X)]−E[Y |f(X), A]|]

Shui et al. [2022, Theorem 4.1]

Group sufficiency gap is upper bounded by

Suff ≤ 4EA,X [|f(X)− fBayes
A (X)|],

where fBayes
A (X) := E[Y |X,A] is the A-group Bayes predictor.

Implication: small prediction error and group sufficiency gap can be
achieved together

▶ Not quite the case of DP/EO [Liu et al., 2019]

Underlying assumption: “fBayes
A=a are similar ∀a ∈ A”
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Illustration of the proposed algorithm

•
Q•Q

?

1
•S1

•Q
?

2
•S2

•Q
?

3

•S3

Subgroups Sa (a ∈ A = {1, 2, 3})
Learned predictive-distribution f̃ ∼ Q

Subgroup-specific predictive-distribution Q
⋆
a (a ∈ A)

Lower-level optimization (cyan), Upper-level optimization (brown)
▶ Alternating update
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Lower-level optimization

•
Q•Q

?

1
•S1

•Q
?

2
•S2

•Q
?

3

•S3

Learn Q
⋆
a from Sa’s and a fixed Q (as a “fair and informative prior”):

Q
⋆
a = argmin

Qa∈Q

{
Ef̃a∼Qa

L̂BCE
a (f̃a) + λKL(Qa∥Q)

}
,∀a ∈ A

Aims to minimize the upper bound of group-wise generalization error
[Shui et al., 2022, Theorem 5.1]
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Upper-level optimization

•
Q•Q

?

1
•S1

•Q
?
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•S2

•Q
?

3

•S3

Update Q from fixed Q
⋆
a’s:

min
Q∈Q

1

|A|
∑
a∈A

KL
(
Q

⋆
a

∥∥∥Q)

Aims to control the upper bound of group sufficiency gap [Shui et al.,
2022, Corollary 5.1]
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Upper-level: Upper bound of group sufficiency gap

Shui et al. [2022, Corollary 5.1]

The group sufficiency gap Suff in randomized algorithm w.r.t. learned
predictive distribution Q is upper bounded by:

Suff ≤ 2
√
2

|A|

∑
a∈A

√
KL(Q⋆

a∥Q)︸ ︷︷ ︸
Optimization error

+
√

KL(Q⋆
a∥D(Y |X,A = a))︸ ︷︷ ︸

Approximation error (irreducible)


where

Q⋆
a = argminQa∈Q Ef̃a∼Qa

[
LBCE
a (f̃a)

]
Q: family of feasible distributions

D(Y |X,A = a): conditional distribution of Y given (X,A = a)
(Recall: its expectation is exactly the fBayes

A=a (X))
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Lower-level: Upper bound of generalization error

Shui et al. [2022, Theorem 5.1]

Suppose:

Datasets {Sa}a∈A with Sa = {(xa
i , y

a
i )}mi=1

i.i.d.∼ D(x, y|A = a);

The BCE loss is upper bounded by L (on Q);

Qa ∈ Q is any learned distribution from dataset Sa; arbitrary Q ∈ Q.

Then with high probability ≥ 1− δ with ∀δ ∈ (0, 1), we have:

1

|A|
∑
a∈A

Ef̃a∼Qa

[
LBCE

a (f̃a)
]

︸ ︷︷ ︸
Generalization error (A=a)

≤ 1

|A|
∑
a∈A

Ef̃a∼Qa

[
L̂BCE

a (f̃a)
]

︸ ︷︷ ︸
Empirical risk (A=a)

+
L√
|A|m

∑
a∈A

√
KL(Qa∥Q)︸ ︷︷ ︸
⇒ Regularizer

+L

√
log(1/δ)

|A|m︸ ︷︷ ︸
→0 as |A|→∞
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FAMS: Fair and Informative Learning for Multiple Subgroups3

Choose Q and Qa from the family of isotropic Gaussian distributions
▶ Computationally efficient: Closed-form & differentiable KL divergences:
▶ Sample w ∼ Q = N (θ,σ2) and wa ∼ Qa = N (θa,σ

2
a) for f̃w & f̃wa

▶ Thus, the algorithm learns (θ,σ2) and (θa,σ
2
a) (∀a ∈ A)

3Perhaps the authors intended to call the algorithm ‘FILMS’? I guess the old name FAMS
stands for something like ‘Fair and Accurate learning for Multiple Subgroups’
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FAMS: Fair and Informative Learning for Multiple Subgroups

Alternating update rule btw lower-/upper-level optimization
▶ e.g., run lower-loop for 10-15 iter ⇒ upper-loop for 1-5 iter
▶ If there are too many subgroups, randomly sample A′ ⊊ A per epoch

Inference: f(x) ≈ 1
N

∑N
i=1 f̃w(i)(x) with w(i) i.i.d.∼ Q (Monte-Carlo)
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Accuracy v.s. Group sufficiency gap
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(a) Amazon Reviews dataset
A = (all individual users)
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(b) Toxic Comments dataset
A = {black,white,Asian,Latino&others}

Experiment details:
▶ Shared embedding with DistilBERT [Sanh et al., 2019]
▶ f̃w and f̃wa as 4-layer FCNN
▶ Baselines: ERM, SNN(stochastic neural net), EIIL, FSCS (both target

Suff ), & DRO (encourages identical losses)
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Group sufficiency gap on each subgroup
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(d) Toxic Comments dataset
A = {black,white,Asian,Latino&others}

Same experiment details

Group sufficiency gap for subgroup a: EX [|E[Y |f(X)]−E[Y |f(X), A = a]|]
▶ Compare with Suff := EA,X [|E[Y |f(X)]− E[Y |f(X), A]|]

Summary: “Lower group sufficiency gap, comparable accuracy.”
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Discussion points

Takeaway: a provable bi-level optimization framework for...
▶ mitigating the group sufficiency bias, and
▶ preserving the utility of data.

Similar and useful idea appears in Probabilistic/Bayesian MAML [Finn et al.,

2018, Yoon et al., 2018, Chen and Chen, 2022], implicit MAML [Rajeswaran

et al., 2019], Ditto(fair & robust FL) [Li et al., 2021], and more.

Why Q
⋆
a’s are regarded as constant in upper-level optimization?

▶ In bilevel optimization literature, the lower-level solution is not
regarded as just a constant. For instance,

min
x,y∗

f(x, y∗) s.t. y∗ ∈ argmin
y

g(x, y).

▶ Likewise, Q
⋆

a depends on Q.
▶ However, it seems difficult to deal with KL(Q⋆

a(Q)∥Q) as a
differentiable function of Q (maybe or not)

▶ Maybe the reason of absence of “convergence” analysis?
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Discussion points

Isn’t it memory-inefficient?
▶ All parameters of Q and Qa’s (a ∈ A) should be stored in memory

appropriately: dim(w)× (|A|+ 1) parameters.
▶ How about learning a policy function πϕ : A → W so that wa := πϕ(a)

is the parameter for Qa? (W : parameter space)
⋆ Regarding A as an action space in RL.
⋆ Applying similar bilevel framework, we could learn the models w.r.t. ϕ

(for πϕ) and θ (for Q)
⋆ Might be useful when the sensitive attribute is ordinal or continuous

(e.g., age or height)

Can a fair binary classification be done by only learning appropriate
threshold τ ∈ [0, 1)?

▶ For a given predictor f : X → [0, 1], return 0 if f(X) < τa; 1 if
f(X) ≥ τa. (Something like ‘personalization’ in federated learning)

▶ Or, similar idea could be implemented with some form of nonlinear
mapping from [0, 1) to itself.
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