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RNN’s exponentially decaying memory

o Linear RNN (with 4_, = 0):
h,= Wh,_, + Ux,
= W Uxg+ W= Ux; + -+ + Ux,
« The weight associated with X, (may) decay exponentially fast.
 Difficult to approximate or optimize to learn long-term memory

= “Curse of Memory”

* Non-linear RNNs have the same problem (Wang et al., 2024)



Alternatives Using State-space Models (SSMs)

« E.g., 34, S5, LRU, RWKY, RetNet, Mamba £.(S6), ...

 Based on the idea of RNN; computational efficiency is much improved (e.g.,
parallelism of training)

* Are they liberated from the Curse of Memory?
 No, without proper manipulation (called ‘stable’ reparameterizations)

* |n the sense of both stable approximation and stable optimization



Overview

1. SSMs without reparameterization can only stably approximate targets with
exponentially decaying memory.

2. With stable reparameterizations, SSMs can achieve a stable approximation
of any well-defined targets of sequence modeling.

|gradient|

3. Regarding the gradient-over-weight scale (= ) as a criterion of

|weight |
optimization stability, the “best” reparameterization in terms of optimization
stability Is derived.
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State-space Models (SSMs) of Our Interest

Continuous-time & Diagonal A

» An SSM maps d-dimensional inputs X = {x,} to 1-dimensional outputs {Y,}:

dh,
d_t = Aht + U.Xt, h—oo — O,
9 =c'o(h), reRR.

o Trainable: A = Diag(4,,...,4 ) € R™" U & R - e R™

e Activation function o( - )

. Solution: y, = c'c <J eSAUxt_SdS> = CTG(
0

« We can stack SSMs by £-layers. (ht(l) — e = ht("ﬂ) — y,, by

o0

J Diag(e*®, ..., e"Ux,_ds |.
0

dr®
de

AR + Us(h~D))



Sequence Modeling = Functional Approximations

. Input seq.: x = {x,} € X = Cy(R, RY) with norm ||x|| , = SUp,cg X o

» Functional sequence: H = {H,: X —- R | 1 € R} (each element is a “functional”)

» Output sequence: y = H(X) meaning that y, = H (X)

A\

« We want to approximate H with our model (another functional sequence) H.

» His alinear functional if H(cX + ¢'X’) = cH(X) + ¢'H(X').

* We are interested in more general, non-linear functional sequences



Memory Function of a Functional sequence

Motivation from linear functionals

 (Lemma A.1 of Li et al. (2020)). Let H = { H,} be a sequence of continuous, linear,
regular, causal, and time-homogeneous functional on C(R, | 4) Then, there exists a
vector-valued integrable function p : [0,00) — | 4 such that

o0

H(X)=x%*p = J xtT_ P(8)ds.
0

In particular, H, is a bounded functional.

 The function p represents the memory of H

 If p decays fast, it forgets inputs far away from time ¢



Memory Function of a Functional sequence

Motivation from linear functional sequence

e Quantifying the memory of H = { H,}

| x"p()]
|p(O) |, = sup
veRN(0) X

| IOOO x ' p($)d(t — s)ds|
sup
xeRN {0} x|
420 1,50 p()ds)
sup
xeR% (0} x|
d 7y
‘E t(ll ) ‘

sup where w'(f) = x - 1,5
er\(0) [ X]g




Memory Function of a Functional sequence

Generalized notion for non-linear functionals

* Definition 2.1 (Memory Function). For a bounded, continuous, regular, causal, time-

homogeneous, and non-linear functional sequence H on C(R, R%), the memory function of H is
defined as

|- H,(u") |
WH)(r) .= sup where u'(?) = x - 1
veRd\(0} Xl T 1 }

 Definition 2.2 (Decaying Memory). The functional sequence H has a decaying memory if

lim,___ 9MHE) () = 0.

[— 00

» We say the decay is exponential if lim,_, __ e”IMH)(f) = 0 for some > 0. (Fast!)

* The slow decay memory function is a necessary condition to build a model with long-term memory.



Stable Approximation of Functional Sequence

. | |H®)
Functional norm: ||H||, := sup - H(O0) |
w0 X[+ 1

. Definition 2.4. Sobolev-type functional sequence norm: || H |

= sup
[

Wl,oo

<”Ht”oo +

dH,
d

)

 Definition 2.5. A sequence of parameterized models {ﬁ( -5 0,)}>_, is said to be f,-stably

approximating the target functional sequence H if

1. E(0) =0, (Exact and Strong Universal Approximation)

2. E(p) is continuous for § € [0, fy], (Robustness of Approximation)

where E(f) = limsup,, .  E (/) and

E,p) = sup
eme{ |6_Hm|2SIB}

H—ﬁ(-;@m)

Wl,oo
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Curse of Memory in Vanilla SSMs

Theorem 3.3

» Assume H is a sequence of bounded, continuous, regular, causal, time-homogeneous
functionals on X = C(R, I d) with decaying memory.

. Suppose a sequence of Z-layer SSMs { H( - 0,01

is [,-stably approximating H.
» Then for a nonnegative integer k < ¢ — 1,

IMH)(1) < O ((d+ DL OLH *e ).

max

» In particular, the memory decays exponentially if £ = 1.



Curse of Memory in Vanilla SSMs

Experiment: approximating polynomial decaying memory
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Reparameterization?

Re-parameterize the matrix A = Diag(4,,...,4)

» With a reparameterization scheme 4, = f(w;) (where w/’s are trainable),

Vi = CTG(

J Diag(e/"s, ..., /") Uxtsds). (1-layer solution)
0



Stable reparameterization
The definition (Defn. 3.4) is highly technical.

 Extension of Theorem 3.5. There exists a class of stable reparameterizations
(See Definition 3.4) satisfying that:

e For ANY bounded, contipuous, regular, causal, time-homogeneous functional
sequence H, if SSMs {H( - ;6,)}>_, is approximating H (i.e., satisfying
condition #1 of Definition 2.5), then this approximation is a stable
approximation.

 Example of stable reparameterizations:
1

aw? + b

forsomea > 0, b > 0

. flw) = =€, flw) = —log(1 + €"), filw) = -



Stable reparameterization
The definition (Defn. 3.4) is highly technical.

 Extension of Theorem 3.5. There exists a class of stable
reparameterizations (See Definition 3.4) satisfying that:

* For ANY bounded, continuous, regular, causal, time-homogeneous
functional sequence H, if SSMs {H( - ;0,,)}>_, is approximating H (i.e.,
satisfying condition #1 of Definition 2.5), then this approximation is a stable
approximation.

Approximation Stable Approximation

Vanilla SSM Universal (Wang & Xue, 2023) | Not universal (Theorem 3.3)

StableSSM Universal (Wang & Xue, 2023) Universal (Theorem 3.5)




Contents

1. Introduction & Overview
Background

Curse of Memory in Vanilla SSMs (w/o Reparam.)

Stable Reparameterization &d Better Approximation Stability

Parameterization Affects to the Gradient Norm Scale

o o &~ W b

Best Reparameterization for Optimization Stability



Parameterization Affects to the Gradient Norm Scale
Theorem 3.6

« Consider a reparameterized SSM ﬁm with scheme f(w;) = A, approximating H.
 Consider a loss function Z(H, ﬁm) = sup, ||H, — ﬁm’tHOO = ||H, — ﬁm,THOO

 The equality holds for any 7 because of time-homogeneity.

* Then the gradient norm is upper bounded as follows:

0% (H,H,) 1))
ow; = Cun, fw)?

where CH,ﬁm is a constant independent of the parameterization f.
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Optimization stability

In terms of gradient-over-weight scale

 We want the ratio between the gradient and the weight small (in magnitude).

e ...0r, bounded by a constant L.
* |t might lead to a stable optimization trajectory.

* |t is desirable when a large learning rate is used In training.



Which parameterization is BEST in stability sense?
Let’s derive it from Theorem 3.6!

0ZH,H, (w,
Recall: ( ) < CHﬁ /)
’ ow; e f(w;)?

= L|w;|. (Gradient-over-weight scale is bounded by L. )

o A sufficient condition: for some real numbers a > QO and b > 0,

o _ 4 (1Y s,

fon?—dw \ fiw)
1 2

_f(w) =aw“+b

. fw) =




Experiments

... With various parameterizations

* The “best” parameterization achieves the smallest (maximum) gradient-over-
weight scale over training.
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Experiments

... With various parameterizations

* The “best” parameterization allows a large range of learning rates at training.

Table 2. Comparison of stability of different parameterizations over MNIST. The experiments conducted on the MNIST and CIFAR10

datasets were replicated three times, with the standard deviation of the test loss indicated in parentheses.

LR Direct Softplus Exp Best
Se-6 | 2.314384 (7.19932e-05) | 2.241642 (0.001279) | 2.241486 (0.001286) | 2.241217 (0.001297)
Se-5 | 2.304331 (2.11817e-07) | 0.779663 (0.001801) | 0.774661 (0.001685) | 0.765220 (0.001352)
Se-4 | 2.303190 (1.66387e-06) | 0.094411 (0.000028) | 0.093418 (0.000024) | 0.091924 (0.000019)
Se-3 NaN 0.023795 (0.000004) | 0.023820 (0.000003) | 0.023475 (0.000002)
Se-2 NaN 0.802772 (1.69448) | 0.868350 (1.55032) | 0.089073 (0.000774)
Se-1 NaN 2.313510 (0.000014) | 2.314244 (0.000025) | 2.185477 (0.048238)
Se+0 NaN NaN NaN 199.013813 (50690.6)




Experiments

... With various parameterizations

 The “best” parameterization achieves better training loss than other
parameterizations when the learning rate is large.
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Appendix A. Properties of functionals

Definition B.1. Let H = {H; : X — R;t € R} be a sequence of functionals.

.

2.

3.

(Linear) H, is linear functional if for any A\, \’ € Rand x,x" € X, Hy(Ax + \'X’) = AH(x) + N Hy(x').

(Continuous) H; is continuous functional if for any x," x € X, limy/ _x |H¢(x") — H¢(x)| = 0.

(Bounded) H; is bounded functional if the norm of functional || H¢||oo := Supy, 4o |||>I:|[|t (’:)_ll - H¢(0)] < oo.

(Time-homogeneous) H = {H; : t € R} is time-homogeneous (or time-shift-equivariant) if the input-output
relationship commutes with time shift: let [S,(x)]|; = z;_, be a shift operator, then H(S,x) = 5, H(x).

. (Causal) H, is causal functional if it does not depend on future values of the input. That is, if x, x’ satisfy x; = z, for

any t < tg, then H;(x) = Hy(x) for any ¢ < t,.

(Regular) H; 1s regular functional if for any sequence {x('”') : n € N} such that wgn) — 0 for almost every s € R,

then lim,, o Ht(x(”)) = 0.



