OptiML 2024 Summer Workshop on State-space Model Theory **Presenter: Hanseul Cho**

StableSSM: Alleviating the Curse of Memory in State-space Models through Stable Reparameterization Shida Wang & Qianxiao Li ICML 2024

Main References

• Shida Wang and Qianxiao Li. **StableSSM: Alleviating the Curse of Memory in State-space Models through Stable Reparameterization.** ICML 2024. [URL.](https://arxiv.org/abs/2311.14495)

-
- Zhong Li, Jiequn Han, Weinan E, and Qianxiao Li. **On the Curse of Memory in Recurrent Neural Networks: Approximation and Optimization Analysis.** ICLR 2021. [URL.](https://arxiv.org/abs/2009.07799)
- Shida Wang, Zhong Li, and Qianxiao Li. **Inverse Approximation Theory for Nonlinear Recurrent Neural Networks.** ICLR 2024. [URL.](https://arxiv.org/abs/2305.19190)
- "S4 model": Albert Gu, Karan Goel, and Christopher Ré. **Efficiently Modeling Long Sequences with Structured State Spaces.** ICLR 2022. [URL.](https://arxiv.org/abs/2111.00396)

RNN's exponentially decaying memory

- Linear RNN (with $h_{-1} = 0$):
	- $h_t = Wh_{t-1} + Ux_t$ $= W^t U x_0 + W^{t-1} U x_1 + \cdots + U x_t$
		-
- The weight associated with x_0 (may) decay exponentially fast.
- Difficult to approximate or optimize to learn long-term memory

➡ **"Curse of Memory"**

• Non-linear RNNs have the same problem (Wang et al., 2024)

Alternatives Using State-space Models (SSMs)

- E.g., S4, S5, LRU, RWKV, RetNet, Mamba 2 (S6), ...
	- Based on the idea of RNN; computational efficiency is much improved (e.g., parallelism of training)
- Are they liberated from the Curse of Memory?
	- **No**, without proper manipulation (called **'stable' reparameterizations**)
	- In the sense of both **stable approximation** and **stable optimization**

Overview

1. SSMs without reparameterization can only **stably approximate** targets with

2. With stable reparameterizations, SSMs can achieve a **stable approximation**

- exponentially decaying memory.
- of any well-defined targets of sequence modeling.
- 3. Regarding the gradient-over-weight scale $(=\frac{19! \text{ rad of 1}}{2 \text{ rad of 2}})$ as a criterion of stability is derived.

optimization stability, the "best" reparameterization in terms of optimization |gradient| |weight|

Contents

- 1. Introduction & Overview
- **2. Background**
- 3. Curse of Memory in Vanilla SSMs (w/o Reparam.)
- 4. Stable Reparameterization ➡ Better Approximation Stability
- 5. Parameterization Affects to the Gradient Norm Scale
- 6. Best Reparameterization for Optimization Stability

State-space Models (SSMs) of Our Interest Continuous-time & Diagonal Λ

• An SSM maps d -dimensional inputs $\mathbf{x} = \{x_t\}$ to 1-dimensional outputs $\{\hat{\mathbf{y}}_t\}$:

- Trainable: $\Lambda = \text{Diag}(\lambda_1, ..., \lambda_m) \in \mathbb{R}^{m \times m}, U \in \mathbb{R}^{m \times d}, c \in \mathbb{R}^m$
- Activation function *σ*(·)

̂

d*t*

$$
= \Lambda h_t + U x_t, \qquad h_{-\infty} = 0,
$$

 $\hat{y}_t = c^\top \sigma(h_t), \qquad t \in \mathbb{R}.$

̂

Solution:
$$
\hat{y}_t = c^\top \sigma \left(\int_0^\infty e^{s\Lambda} U x_{t-s} ds \right) = c^\top \sigma \left(\int_0^\infty \text{Diag}(e^{\lambda_1 s}, ..., e^{\lambda_m s}) U x_{t-s} ds \right).
$$

\nWe can stack SSMs by ℓ -layers. $(h_t^{(1)} \to ... \to h_t^{(\ell)} \to \hat{y}_t$, by $\frac{dh_t^{(l)}}{dt} = \Lambda_l h_t^{(l)} + U_l \sigma(h_t^{(l-1)})$

 dh_t

Sequence Modeling = Functional Approximations

- Input seq.: $\mathbf{x} = \{x_t\} \in \mathcal{X} = C_0(\mathbb{R}, \mathbb{R}^d)$ with norm $\|\mathbf{x}\|_{\infty} = \sup_{t \in \mathbb{R}} |x_t|_{\infty}$
- Functional sequence: $\mathbf{H} = \{H_t: \mathfrak{X} \to \mathbb{R} \mid t \in \mathbb{R}\}$ (each element is a "functional")
- Output sequence: $y = H(x)$ meaning that $y_t = H_t(x)$
- We want to approximate H with our model (another functional sequence) H . ̂
- *H* is a linear functional if $H(c**x** + c'**x**') = cH(**x**) + c'H(**x**').$
	- We are interested in more general, non-linear functional sequences

Memory Function of a Functional sequence Motivation from linear functionals

 ${\sf vector\text{-}valued}$ integrable function $\rho: [0,\infty) \to \mathbb{R}^d$ such that

• (Lemma A.1 of Li et al. (2020)). Let $\mathbf{H} = \{H_t\}$ be a sequence of continuous, linear, regular, causal, and time-homogeneous functional on $C_0(\mathbb{R},\mathbb{R}^d)$. Then, there exists a $C_0(\mathbb{R}, \mathbb{R}^d)$)

$$
H_t(\mathbf{x}) = \mathbf{x} * \rho := \int_0^\infty x_{t-s}^\top \rho(s) ds.
$$

In particular, H_t is a bounded functional.

- The function ρ represents the memory of H
	- if ρ decays fast, it forgets inputs far away from time t

Memory Function of a Functional sequence Motivation from linear functional sequence

• Quantifying the memory of $\mathbf{H} = \{H_t\}$:

 $|\rho|$

$$
(t)|_1 = \sup_{x \in \mathbb{R}^d \setminus \{0\}} \frac{|x^{\top} \rho(t)|}{|x|_{\infty}}
$$

\n
$$
= \sup_{x \in \mathbb{R}^d \setminus \{0\}} \frac{|\int_0^{\infty} x^{\top} \rho(s) \delta(t - s) ds|}{|x|_{\infty}}
$$

\n
$$
= \sup_{x \in \mathbb{R}^d \setminus \{0\}} \frac{|\frac{d}{dt} \int_0^{\infty} (x \cdot 1_{t-s \ge 0})^{\top} \rho(s) ds|}{|x|_{\infty}}
$$

\n
$$
= \sup_{x \in \mathbb{R}^d \setminus \{0\}} \frac{|\frac{d}{dt} H_t(\mathbf{u}^x)|}{|x|_{\infty}}
$$

where
$$
\mathbf{u}^x(t) = x \cdot \mathbf{1}_{t \geq 0}
$$

Memory Function of a Functional sequence Generalized notion for non-linear functionals

• **Definition 2.1 (Memory Function).** For a bounded, continuous, regular, causal, timehomogeneous, and non-linear functional sequence $\bf H$ on $C_0(\mathbb R,\mathbb R^d)$, the memory function of $\bf H$ is \bf defined as $\mathbf H$ on $C_0(\mathbb R,\mathbb R^d)$, the memory function of $\mathbf H$

- Definition 2.2 (Decaying Memory). The functional sequence H has a decaying memory if $\lim_{t\to\infty} \mathfrak{M}(\mathbf{H})(t) = 0.$
	-
- The slow decay memory function is a necessary condition to build a model with long-term memory.

$$
\mathfrak{M}(\mathbf{H})(t) := \sup_{x \in \mathbb{R}^d \setminus \{0\}} \frac{|\frac{d}{dt} H_t(\mathbf{u}^x)|}{|x|_{\infty} + 1} \text{ where } \mathbf{u}^x(t) = x \cdot \mathbf{1}_{t \ge 0}
$$

• We say the decay is exponential if
$$
\lim_{t\to\infty} e^{\beta t} \mathfrak{M}(\mathbf{H})(t) = 0
$$
 for some $\beta > 0$. (Fast!)

Stable Approximation of Functional Sequence

• Functional norm: ∥*H*∥∞ := sup **x**≠0 |*H*(**x**)| |**x**| ∞ $+1$ $+$ |*H*(**0**)|

- **Definition 2.4.** Sobolev-type functional sequence norm:
- **Definition 2.5.** A sequence of parameterized models approximating the target functional sequence H if

1. $E(0) = 0$, (Exact and Strong Universal Approximation)

2. $E(\beta)$ is continuous for $\beta \in [0,\beta_0]$, $\,$ (Robustness of Approximation)

where $E(\beta) = \limsup_{m \to \infty} E_m(\beta)$ and

From:
$$
\|\mathbf{H}\|_{W^{1,\infty}} := \sup_{t} \left(\|H_t\|_{\infty} + \left\| \frac{dH_t}{dt} \right\|_{\infty} \right)
$$

\ndeles $\{\hat{\mathbf{H}}(\cdot;\theta_m)\}_{m=1}^{\infty}$ is said to be β_0 -stably

\nIf if

$$
E_m(\beta) := \sup_{\tilde{\theta}_m \in \{ |\theta - \theta_m|_2 \le \beta \}} \left\| \mathbf{H} - \hat{\mathbf{H}}(\cdot ; \theta_m) \right\|_{W^{1,\infty}}
$$

Contents

- 1. Introduction & Overview
- 2. Background
- **3. Curse of Memory in Vanilla SSMs (w/o Reparam.)**
- 4. Stable Reparameterization ➡ Better Approximation Stability
- 5. Parameterization Affects to the Gradient Norm Scale
- 6. Best Reparameterization for Optimization Stability

Curse of Memory in Vanilla SSMs Theorem 3.3

- Assume H is a sequence of bounded, continuous, regular, causal, time-homogeneous functionals on $\mathfrak{X}=C_0(\mathbb{R},\mathbb{R}^d)$ with decaying memory. $=\mathit{C}_0(\mathbb{R},\mathbb{R}^d)$)
- -Lipschitz activation function σ) is β_0 -stably approximating $\mathbf H$.
- Then for a nonnegative integer $k \leq \ell 1$,
- In particular, the memory decays exponentially if $\ell = 1$.

• Suppose a sequence of ℓ -layer SSMs $\{\mathbf{H}(\;\cdot\;;\theta_m)\}_{m=1}^\infty$ (with hidden dimensions m , uniformly bounded weights $|\theta_{\max}:=\sup_m|\theta_m|_2<\infty$), and a strictly increasing L ̂ $(\cdot ; \theta_m)$ } $_{m=1}^{\infty}$ (with hidden dimensions *m*

. $(\mathbf{H})(t) \leq O\left((d+1)L^{\ell}\theta_{\text{max}}^{\ell+1}t\right)$ k *e*− β ⁰^{*t*}</sub>

Curse of Memory in Vanilla SSMs Experiment: approximating polynomial decaying memory

reparameterization

reparameterization

Contents

- 1. Introduction & Overview
- 2. Background
- 3. Curse of Memory in Vanilla SSMs (w/o Reparam.)
- **4. Stable Reparameterization** ➡ **Better Approximation Stability**
- 5. Parameterization Affects to the Gradient Norm Scale
- 6. Best Reparameterization for Optimization Stability

Reparameterization? Re-parameterize the matrix $\Lambda = \text{Diag}(\lambda_1, ..., \lambda_m)$

$$
\hat{y}_t = c^\top \sigma \left(\int_0^\infty \text{Diag}(e^{f(w_1)s}, \dots \right)
$$

• With a reparameterization scheme $\lambda_i = f(w_i)$ (where w_i 's are trainable), . (1-layer solution) $,e^{f(w_m)s}$)*Uxt*−*s*d*s* \int

Stable reparameterization The definition (Defn. 3.4) is highly technical.

- (See Definition 3.4) satisfying that:
	- condition #1 of Definition 2.5), then this approximation is a stable approximation. ̂
- **•** Example of stable reparameterizations:
	- $f(w) = -e^w$, $f(w) = -\log(1 + e^w)$, $f(w) = -\frac{1}{aw^2 + b}$ for some $f(w) = -e^w, f(w) = -\log(1 + e^w), f(w) = -\frac{1}{w^2}$

• For ANY bounded, continuous, regular, causal, time-homogeneous functional sequence $\mathbf H$, if SSMs $\{\mathbf H(\;\cdot\;;\theta_m)\}_{m=1}^\infty$ is approximating $\mathbf H$ (i.e., satisfying $\left(\cdot;\theta_m\right)\}_{m=1}^{\infty}$ is approximating H

• Extension of Theorem 3.5. There exists a class of stable reparameterizations

$$
f(w) = -\frac{1}{aw^2 + b}
$$
 for some $a > 0, b \ge 0$

Stable reparameterization The definition (Defn. 3.4) is highly technical.

- **• Extension of Theorem 3.5.** There exists a class of stable reparameterizations (See Definition 3.4) satisfying that:
	- **•** For ANY bounded, continuous, regular, causal, time-homogeneous functional sequence \bf{H} , if SSMs $\{\bf H(\;\cdot\;;\theta_m)\}_{m=1}^\infty$ is approximating \bf{H} (i.e., satisfying condition #1 of Definition 2.5), then this approximation is a stable approximation. ̂ $\left(\cdot ; \theta_m \right) \}_{m=1}^{\infty}$ is approximating **H**

Contents

- 1. Introduction & Overview
- 2. Background
- 3. Curse of Memory in Vanilla SSMs (w/o Reparam.)
- 4. Stable Reparameterization ➡ Better Approximation Stability
- **5. Parameterization Affects to the Gradient Norm Scale**
- 6. Best Reparameterization for Optimization Stability

Parameterization Affects to the Gradient Norm Scale Theorem 3.6

where $C_{\mathbf{H}, \hat{\mathbf{H}}_m}$ is a constant independent of the parameterization f . ̂ *f*

• Consider a reparameterized SSM \mathbf{H}_m with scheme $f(w_i) = \lambda_i$, approximating \mathbf{H} .

• Consider a loss function
$$
\mathscr{L}(\mathbf{H}, \hat{\mathbf{H}}_m) = \sup_t ||H_t - \hat{H}_{m,t}||_{\infty} = ||H_t - \hat{H}_{m,t}||_{\infty}
$$
.

- ̂
- ̂
	- The equality holds for any τ because of time-homogeneity.
- Then the gradient norm is upper bounded as follows:

$$
\leq C_{\mathbf{H},\hat{\mathbf{H}}_m} \frac{|f'(w_i)|}{f(w_i)^2},
$$

$$
\frac{\partial \mathcal{L}(\mathbf{H}, \hat{\mathbf{H}}_m)}{\partial w_i}
$$

Contents

- 1. Introduction & Overview
- 2. Background
- 3. Curse of Memory in Vanilla SSMs (w/o Reparam.)
- 4. Stable Reparameterization ➡ Better Approximation Stability
- 5. Parameterization Affects to the Gradient Norm Scale
- **6. Best Reparameterization for Optimization Stability**

Optimization stability in terms of gradient-over-weight scale

- - ... or, bounded by a constant L.
	- It might lead to a stable optimization trajectory.
	- It is desirable when a large learning rate is used in training.

• We want the ratio between the gradient and the weight small (in magnitude).

Which parameterization is BEST in stability sense? Let's derive it from Theorem 3.6!

$$
\text{Recall: } \left| \frac{\partial \mathcal{L}(\mathbf{H}, \hat{\mathbf{H}}_m)}{\partial w_i} \right| \leq C_{\mathbf{H}, \hat{\mathbf{H}}_m} \frac{|f'(w_i)|}{f(w_i)^2} =
$$

• A sufficient condition: for some real numbers $a > 0$ and $b \ge 0$,

f′(*w*) *f*(*w*)2 = $\frac{d}{dw}\left(-\frac{1}{f(w)}\right) = 2aw,$ $-\frac{1}{\alpha}$ *f*(*w*) $=$ $aw^2 + b$, $\therefore f(w) = -\frac{1}{2}$.

$$
\therefore f(w) = -\frac{1}{c}
$$

 $\left|\frac{1}{\sigma_{\rm max}}\right|$ (Gradient-over-weight scale is bounded by L.)

 $aw^2 + b$

Experiments … with various parameterizations

• The "best" parameterization achieves the smallest (maximum) gradient-over-

weight scale over training.

Experiments … with various parameterizations

datasets were replicated three times, with the standard deviation of the test loss indicated in parentheses.

LR	Direct	Softplus	Exp	Best
$5e-6$	2.314384 (7.19932e-05)	2.241642 (0.001279)	2.241486 (0.001286)	2.241217 (0.001297)
$5e-5$	2.304331 (2.11817e-07)	0.779663 (0.001801)	0.774661(0.001685)	0.765220(0.001352)
$5e-4$	2.303190 (1.66387e-06)	0.094411 (0.000028)	0.093418 (0.000024)	0.091924(0.000019)
$5e-3$	NaN	0.023795(0.000004)	0.023820(0.000003)	0.023475(0.000002)
$5e-2$	NaN	0.802772(1.69448)	0.868350 (1.55032)	0.089073(0.000774)
$5e-1$	NaN	2.313510 (0.000014)	2.314244 (0.000025)	2.185477(0.048238)
$5e+0$	NaN	NaN	NaN	199.013813 (50690.6)

• The "best" parameterization allows a large range of learning rates at training.

Table 2. Comparison of stability of different parameterizations over MNIST. The experiments conducted on the MNIST and CIFAR10

Experiments … with various parameterizations

• The "best" parameterization achieves better training loss than other parameterizations when the learning rate is large.

Appendix A. Properties of functionals

Definition B.1. Let $\mathbf{H} = \{H_t : \mathcal{X} \mapsto \mathbb{R}; t \in \mathbb{R}\}$ be a sequence of functionals.

-
- 1. (Linear) H_t is linear functional if for any $\lambda, \lambda' \in \mathbb{R}$ and $\mathbf{x}, \mathbf{x}' \in \mathcal{X}, H_t(\lambda \mathbf{x} + \lambda' \mathbf{x}') = \lambda H_t(\mathbf{x}) + \lambda' H_t(\mathbf{x}')$. 2. (**Continuous**) H_t is continuous functional if for any $\mathbf{x}, \mathbf{x} \in \mathcal{X}$, $\lim_{\mathbf{x}' \to \mathbf{x}} |H_t(\mathbf{x}') - H_t(\mathbf{x})| = 0$. 3. (**Bounded**) H_t is bounded functional if the norm of functional $||H_t||_{\infty} := \sup_{\{\mathbf{x} \neq 0\}} \frac{|H_t(\mathbf{x})|}{||\mathbf{x}||_{\infty}+1} + |H_t(\mathbf{0})| < \infty$.
-
- 4. (Time-homogeneous) $H = \{H_t : t \in \mathbb{R}\}\$ is time-homogeneous (or time-shift-equivariant) if the input-output relationship commutes with time shift: let $[S_{\tau}(\mathbf{x})]_t = x_{t-\tau}$ be a shift operator, then $\mathbf{H}(S_{\tau}\mathbf{x}) = S_{\tau}\mathbf{H}(\mathbf{x})$.
- 5. (Causal) H_t is causal functional if it does not depend on future values of the input. That is, if x, x' satisfy $x_t = x'_t$ for any $t \le t_0$, then $H_t(\mathbf{x}) = H_t(\mathbf{x}')$ for any $t \le t_0$.
- then $\lim_{n\to\infty} H_t(\mathbf{x}^{(n)}) = 0.$

6. (Regular) H_t is regular functional if for any sequence $\{x^{(n)} : n \in \mathbb{N}\}\$ such that $x_s^{(n)} \to 0$ for almost every $s \in \mathbb{R}$,