StableSSM: Alleviating the Curse of Memory in State-space Models through **Stable Reparameterization** Shida Wang & Qianxiao Li **ICML 2024**

OptiML 2024 Summer Workshop on State-space Model Theory Presenter: Hanseul Cho

Main References

- Zhong Li, Jiequn Han, Weinan E, and Qianxiao Li. On the Curse of Memory in **Recurrent Neural Networks: Approximation and Optimization Analysis.** ICLR 2021. URL.
- Shida Wang, Zhong Li, and Qianxiao Li. Inverse Approximation Theory for Nonlinear Recurrent Neural Networks. ICLR 2024. URL.
- "S4 model": Albert Gu, Karan Goel, and Christopher Ré. Efficiently Modeling Long Sequences with Structured State Spaces. ICLR 2022. URL.

Shida Wang and Qianxiao Li. StableSSM: Alleviating the Curse of Memory in State-space Models through Stable Reparameterization. ICML 2024. URL.

RNN's exponentially decaying memory

- Linear RNN (with $h_{-1} = 0$):
 - $h_t = Wh_{t-1} + Ux_t$ $= W^{t}Ux_{0} + W^{t-1}Ux_{1} + \dots + Ux_{t}$
- The weight associated with x_0 (may) decay exponentially fast.
- Difficult to approximate or optimize to learn long-term memory

"Curse of Memory"

• Non-linear RNNs have the same problem (Wang et al., 2024)

Alternatives Using State-space Models (SSMs)

- E.g., S4, S5, LRU, RWKV, RetNet, Mamba (S6), ...
 - Based on the idea of RNN; computational efficiency is much improved (e.g., parallelism of training)
- Are they liberated from the Curse of Memory?
 - No, without proper manipulation (called 'stable' reparameterizations)
 - In the sense of both stable approximation and stable optimization

Overview

- exponentially decaying memory.
- of any well-defined targets of sequence modeling.
- stability is derived.

1. SSMs without reparameterization can only stably approximate targets with

2. With stable reparameterizations, SSMs can achieve a stable approximation

3. Regarding the gradient-over-weight scale $\left(=\frac{|gradient|}{|weight|}\right)$ as a criterion of optimization stability, the "best" reparameterization in terms of optimization

Contents

- 1. Introduction & Overview
- 2. Background
- 3. Curse of Memory in Vanilla SSMs (w/o Reparam.)
- 4. Stable Reparameterization 🖸 Better Approximation Stability
- 5. Parameterization Affects to the Gradient Norm Scale
- 6. Best Reparameterization for Optimization Stability

State-space Models (SSMs) of Our Interest Continuous-time & Diagonal Λ

• An SSM maps d-dimensional inputs $\mathbf{x} = \{x_t\}$ to 1-dimensional outputs $\{\hat{y}_t\}$:

- Trainable: $\Lambda = \text{Diag}(\lambda_1, \dots, \lambda_m) \in \mathbb{R}^{m \times m}, U \in \mathbb{R}^{m \times d}, c \in \mathbb{R}^m$
- Activation function $\sigma(\cdot)$

• Solution:
$$\hat{y}_t = c^{\top} \sigma \left(\int_0^{\infty} e^{s\Lambda} U x_{t-s} ds \right) = c^{\top} \sigma \left(\int_0^{\infty} \text{Diag}(e^{\lambda_1 s}, \dots, e^{\lambda_m s}) U x_{t-s} ds \right).$$

• We can stack SSMs by ℓ -layers. ($h_t^{(1)} \to \dots \to h_t^{(\ell)} \to \hat{y}_t$, by $\frac{dh_t^{(l)}}{dt} = \Lambda_l h_t^{(l)} + U_l \sigma(h_t^{(l-1)})$)

$$\frac{\mathrm{d}h_t}{\mathrm{d}t} = \Lambda h_t + U x_t, \qquad h_{-\infty} = 0,$$

 $\hat{y}_t = c^\top \sigma(h_t), \qquad t \in \mathbb{R}.$

Sequence Modeling = Functional Approximations

- Input seq.: $\mathbf{x} = \{x_t\} \in \mathcal{X} = C_0(\mathbb{R}, \mathbb{R}^d)$ with norm $\|\mathbf{x}\|_{\infty} = \sup_{t \in \mathbb{R}} |x_t|_{\infty}$
- Functional sequence: $\mathbf{H} = \{H_t : \mathfrak{X} \to \mathbb{R} \mid t \in \mathbb{R}\}$ (each element is a "functional")
- Output sequence: $\mathbf{y} = \mathbf{H}(\mathbf{x})$ meaning that $y_t = H_t(\mathbf{x})$
- We want to approximate ${f H}$ with our model (another functional sequence) ${f \hat H}.$
- *H* is a linear functional if $H(c\mathbf{x} + c'\mathbf{x}') = cH(\mathbf{x}) + c'H(\mathbf{x}')$.
 - We are interested in more general, non-linear functional sequences

Memory Function of a Functional sequence **Motivation from linear functionals**

vector-valued integrable function $\rho: [0,\infty) \to \mathbb{R}^d$ such that

$$H_t(\mathbf{x}) = \mathbf{x} * \rho := \int_0^\infty x_{t-s}^\top \rho(s) ds.$$

In particular, H_{t} is a bounded functional.

- The function ρ represents the memory of **H**
 - if ρ decays fast, it forgets inputs far away from time t

• (Lemma A.1 of Li et al. (2020)). Let $\mathbf{H} = \{H_t\}$ be a sequence of continuous, linear, regular, causal, and time-homogeneous functional on $C_0(\mathbb{R}, \mathbb{R}^d)$. Then, there exists a

Memory Function of a Functional sequence **Motivation from linear functional sequence**

• Quantifying the memory of $\mathbf{H} = \{H_t\}$:

$$\begin{aligned} \left| \rho(t) \right|_{1} &= \sup_{x \in \mathbb{R}^{d} \setminus \{0\}} \frac{\frac{\left| x^{\mathsf{T}} \rho(t) \right|}{\left| x \right|_{\infty}}}{\left| x \right|_{\infty}} \\ &= \sup_{x \in \mathbb{R}^{d} \setminus \{0\}} \frac{\frac{\left| \int_{0}^{\infty} x^{\mathsf{T}} \rho(s) \delta(t-s) ds \right|}{\left| x \right|_{\infty}}}{\left| x \right|_{\infty}} \\ &= \sup_{x \in \mathbb{R}^{d} \setminus \{0\}} \frac{\frac{\left| \frac{\mathrm{d}}{\mathrm{d}t} \int_{0}^{\infty} (x \cdot \mathbf{1}_{t-s \ge 0})^{\mathsf{T}} \rho(s) ds \right|}{\left| x \right|_{\infty}} \\ &= \sup_{x \in \mathbb{R}^{d} \setminus \{0\}} \frac{\frac{\left| \frac{\mathrm{d}}{\mathrm{d}t} H_{t}(\mathbf{u}^{x}) \right|}{\left| x \right|_{\infty}}}{\left| x \right|_{\infty}} \end{aligned}$$

where
$$\mathbf{u}^{x}(t) = x \cdot \mathbf{1}_{t \ge 0}$$

<u>Memory Function</u> of a Functional sequence Generalized notion for non-linear functionals

• Definition 2.1 (Memory Function). For a bounded, continuous, regular, causal, timehomogeneous, and non-linear functional sequence \mathbf{H} on $C_0(\mathbb{R}, \mathbb{R}^d)$, the memory function of \mathbf{H} is defined as

$$\mathfrak{M}(\mathbf{H})(t) := \sup_{x \in \mathbb{R}^d \setminus \{0\}} \frac{\left|\frac{\mathrm{d}}{\mathrm{d}t} H_t(\mathbf{u}^x)\right|}{|x|_{\infty} + 1} \text{ where } \mathbf{u}^x(t) = x \cdot \mathbf{1}_{t \ge 0}$$

- Definition 2.2 (Decaying Memory). The functional sequence **H** has a decaying memory if $\lim_{t\to\infty} \mathfrak{M}(\mathbf{H})(t) = 0$.
 - We say the decay is exponential if $\lim_{t\to\infty} e$
- The slow decay memory function is a necessary condition to build a model with long-term memory.

$$e^{\beta t}\mathfrak{M}(\mathbf{H})(t) = 0$$
 for some $\beta > 0$. (Fast!)

Stable Approximation of Functional Sequence

• Functional norm: $||H||_{\infty} := \sup_{\mathbf{x}\neq 0} \frac{|H(\mathbf{x})|}{|\mathbf{x}|_{\infty} + 1} + |H(\mathbf{0})|$

- **Definition 2.4.** Sobolev-type functional sequence
- Definition 2.5. A sequence of parameterized mod approximating the target functional sequence H

1. E(0) = 0, (Exact and Strong Universal Approximation)

2. $E(\beta)$ is continuous for $\beta \in [0, \beta_0]$, (Robustness of Approximation)

where $E(\beta) = \limsup_{m \to \infty} E_m(\beta)$ and

$$E_m(\beta) := \sup_{\tilde{\theta}_m \in \{ |\theta - \theta_m|_2 \le \beta \}} \left\| \mathbf{H} - \hat{\mathbf{H}}(\cdot; \theta_m) \right\|_{W^{1,\infty}}$$

e norm:
$$\|\mathbf{H}\|_{W^{1,\infty}} := \sup_{t} \left(\|H_{t}\|_{\infty} + \left\|\frac{\mathrm{d}H_{t}}{\mathrm{d}t}\right\|_{\infty} \right)$$

dels { $\hat{\mathbf{H}}(\cdot;\theta_{m})$ } $_{m=1}^{\infty}$ is said to be β_{0} -stably
[if

Contents

- 1. Introduction & Overview
- 2. Background
- 3. Curse of Memory in Vanilla SSMs (w/o Reparam.)
- 4. Stable Reparameterization D Better Approximation Stability
- 5. Parameterization Affects to the Gradient Norm Scale
- 6. Best Reparameterization for Optimization Stability

Curse of Memory in Vanilla SSMs Theorem 3.3

- Assume **H** is a sequence of bounded, continuous, regular, causal, time-homogeneous functionals on $\mathfrak{X} = C_0(\mathbb{R}, \mathbb{R}^d)$ with decaying memory.
- -Lipschitz activation function σ) is β_0 -stably approximating **H**.
- Then for a nonnegative integer $k \leq \ell 1$,
- In particular, the memory decays exponentially if $\ell = 1$.

• Suppose a sequence of ℓ -layer SSMs $\{\hat{\mathbf{H}}(\cdot;\theta_m)\}_{m=1}^{\infty}$ (with hidden dimensions m, uniformly bounded weights ($\theta_{\max} := \sup_m |\theta_m|_2 < \infty$), and a strictly increasing L

 $\mathfrak{M}(\mathbf{H})(t) \leq O\left((d+1)L^{\ell}\theta_{\max}^{\ell+1}t^{k}e^{-\beta_{0}t}\right).$

Curse of Memory in Vanilla SSMs Experiment: approximating polynomial decaying memory

reparameterization

SSM with S4 (Gu et al. 2022) reparameterization

Contents

- 1. Introduction & Overview
- 2. Background
- 3. Curse of Memory in Vanilla SSMs (w/o Reparam.)
- 4. Stable Reparameterization D Better Approximation Stability
- 5. Parameterization Affects to the Gradient Norm Scale
- 6. Best Reparameterization for Optimization Stability

Reparameterization? Re-parameterize the matrix $\Lambda = \text{Diag}(\lambda_1, ..., \lambda_m)$

• With a reparameterization scheme $\lambda_i = f(w_i)$ (where w_i 's are trainable),

$$\hat{y}_t = c^{\mathsf{T}} \sigma \left(\int_0^\infty \text{Diag}(e^{f(w_1)s}, \dots) \right)$$

..., $e^{f(w_m)s} Ux_{t-s} ds$). (1-layer solution)

Stable reparameterization The definition (Defn. 3.4) is highly technical.

- (See Definition 3.4) satisfying that:
 - condition #1 of Definition 2.5), then this approximation is a stable approximation.
- Example of stable reparameterizations:
 - $f(w) = -e^w, f(w) = -\log(1+e^w)$

• Extension of Theorem 3.5. There exists a class of stable reparameterizations

• For ANY bounded, continuous, regular, causal, time-homogeneous functional sequence **H**, if SSMs $\{\hat{\mathbf{H}}(\cdot; \theta_m)\}_{m=1}^{\infty}$ is approximating **H** (i.e., satisfying

$$f^{NS}$$
, $f(w) = -\frac{1}{aw^2 + b}$ for some $a > 0, b \ge 0$

Stable reparameterization The definition (Defn. 3.4) is highly technical.

- Extension of Theorem 3.5. There exists a class of stable reparameterizations (See Definition 3.4) satisfying that:
 - For ANY bounded, continuous, regular, causal, time-homogeneous functional sequence **H**, if SSMs $\{\hat{\mathbf{H}}(\cdot;\theta_m)\}_{m=1}^{\infty}$ is approximating **H** (i.e., satisfying condition #1 of Definition 2.5), then this approximation is a stable approximation.

	Approximation	Stable Approximation	
Vanilla SSM	Universal (Wang & Xue, 2023)	Xue, 2023) Not universal (Theorem 3.3)	
StableSSM	Universal (Wang & Xue, 2023)	Universal (Theorem 3.5)	

Contents

- 1. Introduction & Overview
- 2. Background
- 3. Curse of Memory in Vanilla SSMs (w/o Reparam.)
- 4. Stable Reparameterization 🖸 Better Approximation Stability
- 5. Parameterization Affects to the Gradient Norm Scale
- 6. Best Reparameterization for Optimization Stability

Parameterization Affects to the Gradient Norm Scale Theorem 3.6

- Consider a reparameterized SSM $\hat{\mathbf{H}}_m$ with scheme $f(w_i) = \lambda_i$, approximating **H**.
- Consider a loss function $\mathscr{L}(\mathbf{H}, \hat{\mathbf{H}}_m) = st$
 - The equality holds for any τ because of time-homogeneity.
- Then the gradient norm is upper bounded as follows:

$$\partial \mathscr{L}(\mathbf{H}, \hat{\mathbf{H}}_m)$$

 ∂w_i

where $C_{\mathbf{H},\hat{\mathbf{H}}_{m}}$ is a constant independent of the parameterization f.

$$up_t \|H_t - \hat{H}_{m,t}\|_{\infty} = \|H_\tau - \hat{H}_{m,\tau}\|_{\infty}.$$

$$\leq C_{\mathbf{H},\hat{\mathbf{H}}_m} \frac{|f'(w_i)|}{f(w_i)^2},$$

Contents

- 1. Introduction & Overview
- 2. Background
- 3. Curse of Memory in Vanilla SSMs (w/o Reparam.)
- 4. Stable Reparameterization 🖸 Better Approximation Stability
- 5. Parameterization Affects to the Gradient Norm Scale
- 6. Best Reparameterization for Optimization Stability

Optimization stability in terms of gradient-over-weight scale

- - ... or, bounded by a constant *L*.
 - It might lead to a stable optimization trajectory.
 - It is desirable when a large learning rate is used in training.

• We want the <u>ratio between the gradient and the weight</u> small (in magnitude).

Which parameterization is BEST in stability sense? Let's derive it from Theorem 3.6!

• Recall:
$$\left| \frac{\partial \mathscr{L}(\mathbf{H}, \hat{\mathbf{H}}_m)}{\partial w_i} \right| \le C_{\mathbf{H}, \hat{\mathbf{H}}_m} \frac{|f'(w_i)|}{f(w_i)^2} =$$

• A sufficient condition: for some real numbers a > 0 and $b \ge 0$,

 $\frac{f'(w)}{f(w)^2} = \frac{\mathrm{d}}{\mathrm{d}w} \left(-\frac{1}{f(w)} \right) = 2aw,$ $-\frac{1}{f(w)} = aw^2 + b,$

$$\therefore f(w) = -\frac{1}{6}$$

 $L | w_i |$. (Gradient-over-weight scale is bounded by L.)

 $aw^2 + b$.

Experiments ... with various parameterizations

weight scale over training.

The "best" parameterization achieves the smallest (maximum) gradient-over-

Experiments ... with various parameterizations

datasets were replicated three times, with the standard deviation of the test loss indicated in parentheses.

LR	Direct	Softplus	Exp	Best
5e-6	2.314384 (7.19932e-05)	2.241642 (0.001279)	2.241486 (0.001286)	2.241217 (0.001297)
5e-5	2.304331 (2.11817e-07)	0.779663 (0.001801)	0.774661 (0.001685)	0.765220 (0.001352)
5e-4	2.303190 (1.66387e-06)	0.094411 (0.000028)	0.093418 (0.000024)	0.091924 (0.000019)
5e-3	NaN	0.023795 (0.000004)	0.023820 (0.000003)	0.023475 (0.000002)
5e-2	NaN	0.802772 (1.69448)	0.868350 (1.55032)	0.089073 (0.000774)
5e-1	NaN	2.313510 (0.000014)	2.314244 (0.000025)	2.185477 (0.048238)
5e+0	NaN	NaN	NaN	199.013813 (50690.6)

The "best" parameterization allows a large range of learning rates at training.

Table 2. Comparison of stability of different parameterizations over MNIST. The experiments conducted on the MNIST and CIFAR10

Experiments ... with various parameterizations

 The "best" parameterization achieves better training loss than other parameterizations when the learning rate is large.

Appendix A. Properties of functionals

Definition B.1. Let $\mathbf{H} = \{H_t : \mathcal{X} \mapsto \mathbb{R}; t \in \mathbb{R}\}$ be a sequence of functionals.

- 1. (Linear) H_t is linear functional if for any $\lambda, \lambda' \in \mathbb{R}$ and $\mathbf{x}, \mathbf{x}' \in \mathcal{X}, H_t(\lambda \mathbf{x} + \lambda' \mathbf{x}') = \lambda H_t(\mathbf{x}) + \lambda' H_t(\mathbf{x}')$. 2. (Continuous) H_t is continuous functional if for any $\mathbf{x}, \mathbf{x} \in \mathcal{X}$, $\lim_{\mathbf{x}' \to \mathbf{x}} |H_t(\mathbf{x}') - H_t(\mathbf{x})| = 0$.
- 3. (Bounded) H_t is bounded functional if the norm of functional $||H_t||_{\infty} := \sup_{\{\mathbf{x}\neq 0\}} \frac{||H_t(\mathbf{x})|}{||\mathbf{x}||_{\infty}+1} + |H_t(\mathbf{0})| < \infty$.
- 4. (Time-homogeneous) $\mathbf{H} = \{H_t : t \in \mathbb{R}\}$ is time-homogeneous (or time-shift-equivariant) if the input-output relationship commutes with time shift: let $[S_{\tau}(\mathbf{x})]_t = x_{t-\tau}$ be a shift operator, then $\mathbf{H}(S_{\tau}\mathbf{x}) = S_{\tau}\mathbf{H}(\mathbf{x})$.
- 5. (Causal) H_t is causal functional if it does not depend on future values of the input. That is, if \mathbf{x}, \mathbf{x}' satisfy $x_t = x'_t$ for any $t \leq t_0$, then $H_t(\mathbf{x}) = H_t(\mathbf{x}')$ for any $t \leq t_0$.
- then $\lim_{n\to\infty} H_t(\mathbf{x}^{(n)}) = 0.$

6. (**Regular**) H_t is regular functional if for any sequence $\{\mathbf{x}^{(n)} : n \in \mathbb{N}\}\$ such that $x_s^{(n)} \to 0$ for almost every $s \in \mathbb{R}$,