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RNN’s exponentially decaying memory
• Linear RNN (with ):





• The weight associated with  (may) decay exponentially fast.


• Difficult to approximate or optimize to learn long-term memory


➡ “Curse of Memory” 

• Non-linear RNNs have the same problem (Wang et al., 2024)

h−1 = 0
ht = Wht−1 + Uxt

= WtUx0+Wt−1Ux1 + ⋯ + Uxt

x0



Alternatives Using State-space Models (SSMs)

• E.g.,  S4, S5, LRU, RWKV, RetNet, Mamba🐍(S6), …


• Based on the idea of RNN; computational efficiency is much improved (e.g., 
parallelism of training)


• Are they liberated from the Curse of Memory?


• No, without proper manipulation (called ‘stable’ reparameterizations)


• In the sense of both stable approximation and stable optimization



Overview
1. SSMs without reparameterization can only stably approximate targets with 

exponentially decaying memory.


2. With stable reparameterizations, SSMs can achieve a stable approximation 
of any well-defined targets of sequence modeling.


3. Regarding the gradient-over-weight scale (= ) as a criterion of 
optimization stability, the “best” reparameterization in terms of optimization 
stability is derived.

|gradient |

|weight |
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State-space Models (SSMs) of Our Interest
Continuous-time & Diagonal Λ

• An SSM maps -dimensional inputs  to 1-dimensional outputs :





• Trainable: 


• Activation function 


• Solution:  .


• We can stack SSMs by -layers. (  , by )  

d x = {xt} { ̂yt}
dht

dt
= Λht + Uxt, h−∞ = 0,

̂yt = c⊤σ(ht), t ∈ ℝ .
Λ = Diag(λ1, …, λm) ∈ ℝm×m, U ∈ ℝm×d, c ∈ ℝm

σ( ⋅ )

̂yt = c⊤σ (∫
∞

0
esΛUxt−sds) = c⊤σ (∫

∞

0
Diag(eλ1s, …, eλms)Uxt−sds)

ℓ h(1)
t → ⋯ → h(ℓ)

t → ̂yt
dh(l)

t

dt = Λlh(l)
t + Ulσ(h(l−1)

t )



Sequence Modeling = Functional Approximations

• Input seq.:  with norm 


• Functional sequence:   (each element is a “functional”)


• Output sequence:  meaning that 


• We want to approximate  with our model (another functional sequence) . 


•  is a linear functional if . 


• We are interested in more general, non-linear functional sequences

x = {xt} ∈ 𝔛 = C0(ℝ, ℝd) ∥x∥∞ = supt∈ℝ |xt |∞

H = {Ht : 𝔛 → ℝ ∣ t ∈ ℝ}

y = H(x) yt = Ht(x)

H Ĥ

H H(cx + c′￼x′￼) = cH(x) + c′￼H(x′￼)



Memory Function of a Functional sequence 
Motivation from linear functionals

• (Lemma A.1 of Li et al. (2020)). Let  be a sequence of continuous, linear, 
regular, causal, and time-homogeneous functional on . Then, there exists a 
vector-valued integrable function  such that


.


    In particular,  is a bounded functional.


• The function  represents the memory of 


• if  decays fast, it forgets inputs far away from time 

H = {Ht}
C0(ℝ, ℝd)

ρ : [0,∞) → ℝd

Ht(x) = x * ρ := ∫
∞

0
x⊤

t−sρ(s)ds

Ht

ρ H

ρ t



Memory Function of a Functional sequence 
Motivation from linear functional sequence

• Quantifying the memory of : 
H = {Ht}

|ρ(t) |1 = sup
x∈ℝd∖{0}

|x⊤ρ(t) |
|x |∞

= sup
x∈ℝd∖{0}

| ∫ ∞
0

x⊤ρ(s)δ(t − s)ds |

|x |∞

= sup
x∈ℝd∖{0}

| d
dt

∫ ∞
0

(x ⋅ 1t−s≥0)⊤ρ(s)ds |

|x |∞

= sup
x∈ℝd∖{0}

| d
dt Ht(ux) |

|x |∞
where ux(t) = x ⋅ 1t≥0



Memory Function of a Functional sequence 
Generalized notion for non-linear functionals

• Definition 2.1 (Memory Function). For a bounded, continuous, regular, causal, time-
homogeneous, and non-linear functional sequence  on , the memory function of  is 
defined as 


  where 


• Definition 2.2 (Decaying Memory). The functional sequence  has a decaying memory if 
. 


• We say the decay is exponential if  for some .  (Fast!)


• The slow decay memory function is a necessary condition to build a model with long-term memory.

H C0(ℝ, ℝd) H

𝔐(H)(t) := sup
x∈ℝd∖{0}

| d
dt Ht(ux) |

|x |∞ + 1
ux(t) = x ⋅ 1t≥0

H
limt→∞ 𝔐(H)(t) = 0

limt→∞ eβt𝔐(H)(t) = 0 β > 0



Stable Approximation of Functional Sequence

• Functional norm: 


• Definition 2.4. Sobolev-type functional sequence norm: 


• Definition 2.5. A sequence of parameterized models  is said to be -stably 
approximating the target functional sequence  if 


1. ,   (Exact and Strong Universal Approximation)


2.  is continuous for ,   (Robustness of Approximation)


where  and 


∥H∥∞ := sup
x≠0

|H(x) |
|x |∞ + 1

+ |H(0) |

H W1,∞ := sup
t (∥Ht∥∞ +

dHt

dt ∞)
{Ĥ( ⋅ ; θm)}∞

m=1 β0
H

E(0) = 0

E(β) β ∈ [0, β0]

E(β) = lim supm→∞ Em(β)

Em(β) := sup
θ̃m∈{|θ−θm|2≤β}

H − Ĥ( ⋅ ; θm)
W1,∞
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Curse of Memory in Vanilla SSMs
Theorem 3.3

• Assume  is a sequence of bounded, continuous, regular, causal, time-homogeneous 
functionals on  with decaying memory.


• Suppose a sequence of -layer SSMs  (with hidden dimensions , 
uniformly bounded weights ( ), and a strictly increasing 
-Lipschitz activation function ) is -stably approximating .


• Then for a nonnegative integer , 


.


• In particular, the memory decays exponentially if .

H
𝔛 = C0(ℝ, ℝd)

ℓ {Ĥ( ⋅ ; θm)}∞
m=1 m

θmax := supm |θm |2 < ∞ L
σ β0 H

k ≤ ℓ − 1

𝔐(H)(t) ≤ O ((d + 1)Lℓθℓ+1
max tke−β0t)

ℓ = 1



Curse of Memory in Vanilla SSMs
Experiment: approximating polynomial decaying memory

Vanilla SSM SSM with Softplus 
reparameterization

SSM with S4 (Gu et al. 2022) 
reparameterization

< <
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Reparameterization?
Re-parameterize the matrix Λ = Diag(λ1, …, λm)

• With a reparameterization scheme  (where ’s are trainable),


.  (1-layer solution)

λi = f(wi) wi

̂yt = c⊤σ (∫
∞

0
Diag(ef(w1)s, …, ef(wm)s)Uxt−sds)



Stable reparameterization
The definition (Defn. 3.4) is highly technical.

• Extension of Theorem 3.5.  There exists a class of stable reparameterizations 
(See Definition 3.4) satisfying that:


• For ANY bounded, continuous, regular, causal, time-homogeneous functional 
sequence , if SSMs  is approximating  (i.e., satisfying 
condition #1 of Definition 2.5), then this approximation is a stable 
approximation.


• Example of stable reparameterizations:


• , ,   for some 

H {Ĥ( ⋅ ; θm)}∞
m=1 H

f(w) = − ew f(w) = − log(1 + ew) f(w) = − 1
aw2 + b

a > 0, b ≥ 0



Stable reparameterization
The definition (Defn. 3.4) is highly technical.

• Extension of Theorem 3.5.  There exists a class of stable 
reparameterizations (See Definition 3.4) satisfying that:


• For ANY bounded, continuous, regular, causal, time-homogeneous 
functional sequence , if SSMs  is approximating  (i.e., 
satisfying condition #1 of Definition 2.5), then this approximation is a stable 
approximation.

H {Ĥ( ⋅ ; θm)}∞
m=1 H

Approximation Stable Approximation

Vanilla SSM Universal (Wang & Xue, 2023) Not universal (Theorem 3.3)

StableSSM Universal (Wang & Xue, 2023) Universal  (Theorem 3.5)
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Parameterization Affects to the Gradient Norm Scale
Theorem 3.6

• Consider a reparameterized SSM  with scheme  , approximating .


• Consider a loss function .


• The equality holds for any  because of time-homogeneity.


• Then the gradient norm is upper bounded as follows:


,


where  is a constant independent of the parameterization .

Ĥm f(wi) = λi H

ℒ(H, Ĥm) = supt ∥Ht − Ĥm,t∥∞ = ∥Hτ − Ĥm,τ∥∞

τ

∂ℒ(H, Ĥm)
∂wi

≤ CH,Ĥm

| f′￼(wi) |
f(wi)2

CH,Ĥm
f
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Optimization stability
in terms of gradient-over-weight scale

• We want the ratio between the gradient and the weight small (in magnitude).


• …or, bounded by a constant .


• It might lead to a stable optimization trajectory.


• It is desirable when a large learning rate is used in training.

L



Which parameterization is BEST in stability sense?
Let’s derive it from Theorem 3.6!

• Recall: .  (Gradient-over-weight scale is bounded by . )


• A sufficient condition: for some real numbers  and ,


∂ℒ(H, Ĥm)
∂wi

≤ CH,Ĥm

| f′￼(wi) |
f(wi)2

= L |wi | L

a > 0 b ≥ 0

f′￼(w)
f(w)2

=
d

dw (−
1

f(w) ) = 2aw,

−
1

f(w)
= aw2 + b,

∴ f(w) = −
1

aw2 + b
.



Experiments
… with various parameterizations

• The “best” parameterization achieves the smallest (maximum) gradient-over-
weight scale over training.



Experiments
… with various parameterizations

• The “best” parameterization allows a large range of learning rates at training.



Experiments
… with various parameterizations

• The “best” parameterization achieves better training loss than other 
parameterizations when the learning rate is large.

LR=0.001 LR=0.01



Q&A



Appendix A. Properties of functionals


