Viewing Log-Depth Iransformers via
the Lens of Distributed Computing

OptiML Group Meeting

October 10th, 2024

el
il N i

Presented by Hanseul Cho

Optimization & Machine Learning

Overview

* A new theoretical tool to understand the expressive power of transformers:
Massively Parallel Computation (MPC)

 Depth separation: transformers > alternative architectures.

» Based on a toy task: k-hop induction task

e Main references:

 [SHT24] Clayton Sanford, Danial Hsu, and Matus Telgarsky. Transformers, Parallel Computation, and
Logarithmic Depth. ICML 2024.

 [SFHT+24] Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan
Halcrow, Bryan Perozzi, and Vahab Mirrokni. Understanding Transformer Reasoning Capabilities via
Graph Algorithms. arXiv preprint. 2024.

https://openreview.net/pdf?id=QCZabhKQhB
https://openreview.net/pdf?id=QCZabhKQhB
https://openreview.net/pdf?id=QCZabhKQhB
https://openreview.net/pdf?id=QCZabhKQhB
https://arxiv.org/pdf/2405.18512
https://arxiv.org/pdf/2405.18512
https://arxiv.org/pdf/2405.18512
https://arxiv.org/pdf/2405.18512

Contents

1. Transformer Architecture

2. Massively Parallel Computation (MPC) Model
3. Transformer k. MPC Protocol

4. Separation between Architectures with k-hop Induction Head Task

Transformer Architecture

o Self-attention head:
« fX) = softmax (QX)KX)"+ /) V(X)
c LO,K,V: RNVXm _y RNXM row-wise softmax

o X =[xy, ---,xN]T, attention mask

value:

V(X)
RN Xm

f(X) = softmax

Transformer Architecture

o Self-attention head:
« fX) = softmax (QX)KX)"+ /) V(X)
c LO,K,V: RNVXm _y RNXM row-wise softmax

o X =[xy, ---,xN]T, attention mask
 Multi-head attention (with residual connection):

. 8 =X+ Y, fi,X)

 Multi-layer perceptrons (MLPs) per word (or row):
. ¢in : RNde — [RNXm ¢0ut . [RNXm RNXdout

N :
» Transformer I" € Transformer, ; ;; ; ; :

o« T(X) = (™™ ogp o 0g 0 d™(X)

*

No positional embedding
No Normalization layers

*

* p = O(log N)-bit precision

T(X) € R¥%dou

fo1 fro " hH

hao ha - hiw

X € RN*d

Theoretical Lenses to Study Transformers

Specifically about their Expressive Power

1. Transformers as machines that recognize formal languages
* Dyck language, star-free regular language ...
* Fixed-size transformers cannot handle long inputs

2. Transformers as circuits

. TCY NC!... (do you remember?)
* Fixed-size transformers cannot solve several graph tasks (e.g. graph connectivity)

3. Transformers as finite-state automata

» Studies log-depth transformers but not even near-optimal

Theoretical Lenses to Study Transformers

Specifically about their Expressive Power

Depth
: : » cUNe
1. Transformers as machines that recognize formal languages s | 620 S
* Dyck language, star-free regular language ... |
_ _ _ Fixed . Yes! No you don’t.
* Fixed-size transformers cannot handle long inputs
2. Transformers as circuits

. TC°, NC',... (do you remember?) Input Length

* Fixed-size transformers cannot solve several graph tasks (e.g. graph connectivity)
3. Transformers as finite-state automata

» Studies log-depth transformers but not even near-optimal
4. Transformers as communication protocols (e.g. MPC)

* Enable analysis via communication complexity & distributed computation

* Logarithmic-depth transformers can solve several graph tasks (and they might be near-optimal!)

Massively Parallel Computation (MPC) [KSV10]

* A theoretical model to study distributed computing frameworks e.g. MapReduce,
Hadoop, and Spark.

e Goal:

» To design protocols that use fewer (e.g. O(log N)) rounds of communication
between machines whose local memory is sublinear in input length V.

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf
https://en.wikipedia.org/wiki/MapReduce

Massively Parallel Computation (MPC) [KSV10]

* A theoretical model to study distributed computing frameworks e.g. MapReduce,
Hadoop, and Spark.

e Goal:

» To design protocols that use fewer (e.g. O(log N)) rounds of communication
between machines whose local memory is sublinear in input length V.

¢ Setup:
« g machines with memory s = o(/N) (words). Total memory gs = C2(N).

 Computation proceeds in rounds:

» |In each round r € |R], each machine computes an arbitrary function of its local
memory to prepare at most s words (in total) to send/distribute to other machines.

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf
https://en.wikipedia.org/wiki/MapReduce

Massively Parallel Computation (MPC) [KSV10]

Round 1 Round 2 XX Round R

Sends
< s words

NN

Input

Machine '
(N words) 3 Machinej

Machine; Machine; Machine;

Machine,

Machine;

\\

Recelves
< § words

I\/Iachineq I\/Iachineq

I\/Iachineq

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf

Massively Parallel Computation (MPC) [KSV10]

Example: Counting unique words

« Suppose we have an input with N, some of them are identical.

« Naive O(N)-time sequential algorithm: count one by one (use hash table).

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf

Massively Parallel Computation (MPC) [KSV10]

Example: Counting unique words

» Two rounds of MPC is enough! (O(s)-time in parallel)
 Round 1:

- Each machine 1 computes a word frequency count ¢, ; for each word w it has.

 Choose a unigue machine for each word (e.g., by hashing) and send the counts.
 Round 2:

. Add all received counts:), ¢, ;. — Done.

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf

Graph Connectivity Problem with MPC

“one-versus-two cycle” problem VN Vat
NN

* Problem: An undirected graph G with N vertices and N edges is given. Can you distinguish:
* A single cycle on NV vertices, and
A union of two cycles each on N/2 vertices?

 There exists a O(log N)-round MPC protocol (See here, Section 7.2, Algorithm 13)

|E]

« By serializing G = (V, E) as (i), V|, Uy, Vo, . . ., U1, Vi), Where E = {(u;, Vi)}izl'

e Can we do better?

https://www.andrew.cmu.edu/user/moseleyb/papers/MPC-Tutorial.pdf

Graph Connectivity Problem with MPC

“one-versus-two cycle” problem Yl Vat >
‘\v—v/' .\. @
. — A long-standing open problem! (But generally believed as “NO”.)

» Conjecture (“one-versus cycle” conjecture). Let any y > 0, 6 € (0,1), and N. Then, any (y, 0)
-MPC protocol that solves the one-versus-two cycle problem requires £€2(log N') rounds.

* (7,0)-MPC protocol uses g = O(N 1+7=9) machines with memory of s = O(n°) words.

https://www.andrew.cmu.edu/user/moseleyb/papers/MPC-Tutorial.pdf

MPC Protocol 2 Transformer

A R-round MPC Protocol can be simulated by a depth O(R) transformer

* Theorem [SFHT+24, Theorem 8]. For constants 0 < 0 < o'< 1l andy > 0,
any R-round (y, 0)-MPC protocol on N inputs can be expressed as a

N .
transformer 1" € Transformerm,L,H,Ll with depth

. (&)
min{ (6’ — 8)2, 6%}

single head H = 1 and embedding dimension m = O(N?).

MPC Protocol L. Transformer

A R-round MPC Protocol can be simulated by a depth O(R) transformer

 Corollary (Informal, SHT24 Cor. 3.3). There exists a O(log V)-layer 1-head
transformer that identifies the connected components of any input graph (thus
solving one-versus-two cycle problem).

MPC Protocol Transformer

A depth L transformer can be simulated by a O(L)-round MPC Protocol

e Theorem [SHT24, Theorem 3.4]. For constants) < 0 < o' < 1l andy > 0, any

transformer 1" € Transformer]n\; 7 11 With width mH = O(N°) can be computed via a

R-round (1 + &', 6')-MPC protocol with

L
R=0|——
=)

using ¢ = O(N?) machines, each with s = O(N?) local memory.

MPC Protocol Transformer

A depth L transformer can be simulated by a O(L)-round MPC Protocol

« Theorem [SHT24, Theorem 3.4]. For constants) < 0 < 0’ < 1 andy > 0, any

transformer T' € Transformer]n\; ;1 With width mH = O(N®) can be computed via a

R-round (1 + o', 0')-MPC protocol with

L
R=0|——
<5’—5>

using ¢ = O(N?) machines, each with s = O(N?) local memory.

* Corollary (Informal, SHT24 Cor. 3.5). Assume the “one-versus-two cycle” conjecture.

Then, for any constant € > 0, any transformer 1" € Transformer]n\; 7 711 that solves the

graph connectivity requires either a width mH = Q(N'~¢) or a depth L = Q(log N).
(Thus, log-depth is near-optimal for parameter-efficient transformers.)

What we have so far...

e Connection between transformers ks MPC protocols

e One simulates another.
* They share (in)abilities.

* (Im)possibility of solving the graph connectivity task.

* Logarithmic depth can solve it (while constant depth cannot)
* |t might be optimal!

What we have so far...

 Connection between transformers & MPC protocols

 One simulates another.
* They share (in)abilities.

* (Im)possibility of solving the graph connectivity task.
* Logarithmic depth can solve it (while constant depth cannot)

* It might be optimal

 What else we can say?
 The superiority of transformers above other alternatives.

e ... through a toy task d&.

A Toy Task: k-hop Induction Heads (hop,)

To study the separation between transformers versus non-parallel architectures

 From now: Decoder-only (causal) Transformers & Next-token Predictions.

A Toy Task: k-hop Induction Heads (hop,)

To study the separation between transformers versus non-parallel architectures

 From now: Decoder-only (causal) Transformers & Next-token Predictions.

 Induction heads task

* Find the token that follows the last previous occurrence of the final token in the input
sequence.

 E.g.) Given “...abcdebbdab”, the answer is ‘d’.

A Toy Task: k-hop Induction Heads (hop,)

To study the separation between transformers versus non-parallel architectures

 From now: Decoder-only (causal) Transformers & Next-token Predictions.

 Induction heads task

* Find the token that follows the last previous occurrence of the final token in the input
sequence.

 E.g.) Given “...abcdebbdab”, the answer is ‘d’.

» A generalization: k-hop induction heads task

 E.g.) Given “...abcd @gfa\b the answer of hop, (i.e., k = 2) is ‘¢,

* Motivated by multi-step reasoning tasks: “[...] Alice is a doctor. [...] Bob’s mother is
Alice. [...] What is the profession of Bob’s mother?”

Transformers for k-hop Induction Heads
Depth O(log k) is (maybe) necessary and (surely) sufficient

« Forany k > 1 and a vocabulary of size < /N:

» Theorem (Sufficiency, SHT24 Thm 4.2). There exists a (|log, k| + 2)-layer 1-head
transformer with causal attention masks and a constant embedding dimension that
computes hop,.

* Theorem (Necessity, SHT24 Cor 4.3). Assume the “one-versus-two cycle” conjecture.

Consider any even k = 0(\”\7). Then, any decoder-only transformer 7' that computes hop,
requires either a width mH = Q(k"?°) or a depth L = Q(log k).

Transformers for k-hop Induction Heads

Learned Transformers with Adam: Learnable with log-depth!

 Empirical Setting:

L-layer transformer token-wise classification error on hopg

» Curriculum learning mixture of hop, for
ke {0,...,16}, vocab size 4. .

« Small GPT2-based models: m = 128, 05
H=4,Le {23456}, N=100. &

0.3 -

|
N

~ r~
Il
w

~ r~ r~

I |
o U b

* Jraining: 100K steps of Adam.

0.2 -

0.1 -

e Observation:
0.0 A

o Sharp learnability threshold at i >
L~ |log, k| + 2.

~~ B -

What about Other Architectures?
When k = O(N%) (for & < 1/6)

Requirements (“Width OR Depth”)
Architecture Type Width Seoth / N
| ep CoT
Transformers 0.99¢ — (]
with Dense Attention Q(N) £ (08 N)
Recurrent Architectures 1-6¢ _ &
(RNN, Mamba, ...) LN) L = CA(N®)
Transformers 1—-6¢ _ ¢
with Sub-Quadratic Attention Q(N) L= Q(N)
1-Layer Transformers 0O (N1_6<§) N, _ Q(ch)
with Chain of Thoughts Col

* Negr: Additional number of tokens in the input sequence for CoT prompting

What about Other Architectures?

When k& = O(log N)

Requirements (“Width OR Depth”)
Architecture Type
Width Depth / Nogr
Transformers 0.99 — |
with Dense Attention Q(l()g N) L Q(log OZ N)
Recurrent Architectures = I = O]
= O
(RNN, Mamba, ...) C2(N) (log N)
Transformers = _
with Sub-Quadratic Attention Q(N) L= Q(log N)
1-Layer Transformers Q N N — 0 (10 N)
with Chain of Thoughts (V) CoT &

* Negr: Additional number of tokens in the input sequence for CoT prompting

Conclusion

e Parallelism i1s a central feature of transformers.

* Only a logarithmic scaling of depth and sublinear scaling of width (in V)
suffices to build an expressive and well-performing transformer, even
theoretically.

* (Near)-quadratic computation of attention seems necessary for log-depth
transformers.

* Chain-of-thought (CoT) prompting is not enough for fixed-layer transformers
to beat log-depth transformers without CoT.

