
Presented by Hanseul Cho

Viewing Log-Depth Transformers via
the Lens of Distributed Computing
OptiML Group Meeting
October 10th, 2024

 ≃

Overview
• A new theoretical tool to understand the expressive power of transformers:

Massively Parallel Computation (MPC)

• Depth separation: transformers > alternative architectures.

• Based on a toy task: -hop induction task

• Main references:

• [SHT24] Clayton Sanford, Danial Hsu, and Matus Telgarsky. Transformers, Parallel Computation, and

Logarithmic Depth. ICML 2024.

• [SFHT+24] Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan

Halcrow, Bryan Perozzi, and Vahab Mirrokni. Understanding Transformer Reasoning Capabilities via
Graph Algorithms. arXiv preprint. 2024.

k

https://openreview.net/pdf?id=QCZabhKQhB
https://openreview.net/pdf?id=QCZabhKQhB
https://openreview.net/pdf?id=QCZabhKQhB
https://openreview.net/pdf?id=QCZabhKQhB
https://arxiv.org/pdf/2405.18512
https://arxiv.org/pdf/2405.18512
https://arxiv.org/pdf/2405.18512
https://arxiv.org/pdf/2405.18512

Contents

1. Transformer Architecture

2. Massively Parallel Computation (MPC) Model

3. Transformer ↔ MPC Protocol

4. Separation between Architectures with -hop Induction Head Taskk

Transformer Architecture
• Self-attention head:

•

• , row-wise softmax

• , attention mask

• Multi-head attention:

•

• Multi-layer perceptrons (MLPs) per word (or row):

•

• Transformer :

•

f(X) = softmax (Q(X)K(X)⊤+Λ) V(X)
f, Q, K, V : ℝN×m → ℝN×m

X = [x1, ⋯, xN]⊤ Λ

gl(X) = X+ ∑H
h=1 fl,h(X)

ϕin : ℝN×din → ℝN×m, ϕout : ℝN×m → ℝN×dout

T ∈ 𝖳𝗋𝖺𝗇𝗌𝖿𝗈𝗋𝗆𝖾𝗋m,L,H,din,dout

T(X) = (ϕout ∘ gL ∘ ⋯ ∘ g1 ∘ ϕin)(X)

query:
 Q(X)

ℝN×m

key: K(X)⊤

ℝm×N

f(X) = softmax() value:
 V(X)

ℝN×m

= value:
 V(X)

ℝN×m
softmax (Q(X)K(X)⊤)

Transformer Architecture
• Self-attention head:

•

• , row-wise softmax

• , attention mask

• Multi-head attention (with residual connection):

•

• Multi-layer perceptrons (MLPs) per word (or row):

•

• Transformer :

•

f(X) = softmax (Q(X)K(X)⊤+Λ) V(X)
f, Q, K, V : ℝN×m → ℝN×m

X = [x1, ⋯, xN]⊤ Λ ∈ {−∞,0}N×N

gl(X) = X+ ∑H
h=1 fl,h(X)

ϕin : ℝN×din → ℝN×m, ϕout : ℝN×m → ℝN×dout

T ∈ 𝖳𝗋𝖺𝗇𝗌𝖿𝗈𝗋𝗆𝖾𝗋N
m,L,H,din,dout

T(X) = (ϕout ∘ gL ∘ ⋯ ∘ g1 ∘ ϕin)(X)

f1,1 f1,2 f1,H

f2,1 f2,2 f2,H

fL,1 fL,2 fL,H

X ∈ ℝN×din

…

…

…

⋮

ϕin

ϕout

T(X) ∈ ℝN×dout

* No positional embedding

* No Normalization layers

* -bit precisionp = Θ(log N)

1. Transformers as machines that recognize formal languages

• Dyck language, star-free regular language …

• Fixed-size transformers cannot handle long inputs

2. Transformers as circuits

• , ,… (do you remember?)

• Fixed-size transformers cannot solve several graph tasks (e.g. graph connectivity)

3. Transformers as finite-state automata

• Studies log-depth transformers but not even near-optimal

4. (New!) Transformers as communication protocols (e.g. MPC)

• Enable analysis via communication complexity & distributed computation

• Logarithmic-depth transformers can solve several graph tasks (and they are near-optimal!)

TC0 NC1

Theoretical Lenses to Study Transformers
Specifically about their Expressive Power

1. Transformers as machines that recognize formal languages

• Dyck language, star-free regular language …

• Fixed-size transformers cannot handle long inputs

2. Transformers as circuits

• , ,… (do you remember?)

• Fixed-size transformers cannot solve several graph tasks (e.g. graph connectivity)

3. Transformers as finite-state automata

• Studies log-depth transformers but not even near-optimal

4. (New!) Transformers as communication protocols (e.g. MPC)

• Enable analysis via communication complexity & distributed computation

• Logarithmic-depth transformers can solve several graph tasks (and they might be near-optimal!)

TC0 NC1

Theoretical Lenses to Study Transformers
Specifically about their Expressive Power

“Yes I can” curve

Fixed L

Depth

Input Length

Yes! No you don’t.

A plot in our mind: (not rigorous)

Massively Parallel Computation (MPC) [KSV10]

• A theoretical model to study distributed computing frameworks e.g. MapReduce,
Hadoop, and Spark.

• Goal:

• To design protocols that use fewer (e.g.) rounds of communication
between machines whose local memory is sublinear in input length .

O(log N)
N

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf
https://en.wikipedia.org/wiki/MapReduce

Massively Parallel Computation (MPC) [KSV10]

• A theoretical model to study distributed computing frameworks e.g. MapReduce,
Hadoop, and Spark.

• Goal:

• To design protocols that use fewer (e.g.) rounds of communication
between machines whose local memory is sublinear in input length .

• Setup:

• machines with memory (words). Total memory .

• Computation proceeds in rounds:

• In each round , each machine computes an arbitrary function of its local
memory to prepare at most words (in total) to send/distribute to other machines.

O(log N)
N

q s = o(N) qs = Ω(N)

r ∈ [R]
s

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf
https://en.wikipedia.org/wiki/MapReduce

Massively Parallel Computation (MPC) [KSV10]

Input
(words)N

Machine1

Machine2

Machine3

Machineq

⋮

Machine1

Machine2

Machine3

Machineq

⋮

Machine1

Machine2

Machine3

Machineq

⋮

⋯

Round 1 Round 2 Round R

 w
ord

s

≤
s

Sends

 words≤ s

Receives

 words≤ s

⋯

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf

Massively Parallel Computation (MPC) [KSV10]
Example: Counting unique words (Recall from Data Mining 101…)

• Suppose we have an input with , some of them are identical.

• Naive -time sequential algorithm: count one by one (use hash table).

• Two rounds of MPC is enough! (-time in parallel)

• Round 1:

• Each machine computes word frequency count for each word .

• Choose a unique machine for each word (e.g., by hashing) and send the counts.

• Round 2:

• Add all received counts: . — Done.

N

O(N)

O(s)

i cw,i w

∑i cw,i

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf

Massively Parallel Computation (MPC) [KSV10]
Example: Counting unique words (Recall from Data Mining 101…)

• Suppose we have an input with , some of them are identical.

• Naive -time sequential algorithm: count one by one (use hash table).

• Two rounds of MPC is enough! (-time in parallel)

• Round 1:

• Each machine computes a word frequency count for each word it has.

• Choose a unique machine for each word (e.g., by hashing) and send the counts.

• Round 2:

• Add all received counts: . — Done.

N

O(N)

O(s)

i cw,i w

∑i cw,i

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf

Graph Connectivity Problem with MPC
“one-versus-two cycle” problem

• Problem: An undirected graph with vertices and edges is given. Can you distinguish:

• A single cycle on vertices, and

• A union of two cycles each on vertices?

• There exists a -round MPC protocol (See here, Section 7.2, Algorithm 13)

• By serializing as , where .

• Can we do better? — A long-standing open problem!

• Conjecture (“one-versus cycle” conjecture). Let any , , and . Then, any
-MPC protocol that solves the one-versus-two cycle problem requires rounds.

• -MPC protocol uses machines with memory of words.

G N N
N

N/2

O(log N)

G = (V, E) (u1, v1, u2, v2, . . . , u|E|, v|E|) E = {(ui, vi)}|E|
i=1

γ > 0 δ ∈ (0,1) N (γ, δ)
Ω(log N)

(γ, δ) q = Θ(N1+γ−δ) s = O(nδ)

v.s.

https://www.andrew.cmu.edu/user/moseleyb/papers/MPC-Tutorial.pdf

Graph Connectivity Problem with MPC
“one-versus-two cycle” problem

• Problem: An undirected graph with vertices and edges is given. Can you distinguish:

• A single cycle on vertices, and

• A union of two cycles each on vertices?

• There exists a -round MPC protocol (See here, Section 7.2, Algorithm 13)

• By serializing as , where .

• Can we do better? — A long-standing open problem! (But generally believed as “NO”.)

• Conjecture (“one-versus cycle” conjecture). Let any , , and . Then, any
-MPC protocol that solves the one-versus-two cycle problem requires rounds.

• -MPC protocol uses machines with memory of words.

G N N
N

N/2

O(log N)

G = (V, E) (u1, v1, u2, v2, . . . , u|E|, v|E|) E = {(ui, vi)}|E|
i=1

γ > 0 δ ∈ (0,1) N (γ, δ)
Ω(log N)

(γ, δ) q = Θ(N1+γ−δ) s = O(nδ)

v.s.

https://www.andrew.cmu.edu/user/moseleyb/papers/MPC-Tutorial.pdf

MPC Protocol ➡ Transformer
A -round MPC Protocol can be simulated by a depth transformerR O(R)

• Theorem [SFHT+24, Theorem 8]. For constants and ,
any -round -MPC protocol on inputs can be expressed as a
transformer with depth

,

single head and embedding dimension .

• Corollary (Informal, SHT24 Cor. 3.3). There exists a -layer 1-head
transformer that identifies the connected components of any input graph (thus
solving one-versus-two cycle problem).

0 < δ < δ′ < 1 γ > 0
R (γ, δ) N

T ∈ TransformerN
m,L,H,1,1

L = O (R(1 + γ)2

min{(δ′ − δ)2, δ2})
H = 1 m = O(Nδ′)

O(log N)

MPC Protocol ➡ Transformer
A -round MPC Protocol can be simulated by a depth transformerR O(R)

• Theorem [SFHT+24, Theorem 8]. For constants and ,
any -round -MPC protocol on inputs can be expressed as a
transformer with depth

,

single head and embedding dimension .

• Corollary (Informal, SHT24 Cor. 3.3). There exists a -layer 1-head
transformer that identifies the connected components of any input graph (thus
solving one-versus-two cycle problem).

0 < δ < δ′ < 1 γ > 0
R (γ, δ) N

T ∈ TransformerN
m,L,H,1,1

L = O (R(1 + γ)2

min{(δ′ − δ)2, δ2})
H = 1 m = O(Nδ′)

O(log N)

MPC Protocol ⬅ Transformer
A depth transformer can be simulated by a -round MPC ProtocolL O(L)

• Theorem [SHT24, Theorem 3.4]. For constants and , any
transformer with width can be computed via a

-round -MPC protocol with

using machines, each with local memory.

• Corollary (Informal, SHT24 Cor 3.5). Assume the “one-versus-two cycle” conjecture.

Then, for any constant , any transformer that solves the
graph connectivity requires either a width or a depth .
(Thus, log-depth is near-optimal for parameter-efficient transformers.)

0 < δ < δ′ < 1 γ > 0
T ∈ TransformerN

m,L,H,1,1 mH = O(Nδ)
R (1 + δ′ , δ′)

R = O (L
δ′ − δ)

q = O(N2) s = O(Nδ′)

ϵ > 0 T ∈ TransformerN
m,L,H,1,1

mH = Ω(N1−ϵ) L = Ω(log N)

MPC Protocol ⬅ Transformer
A depth transformer can be simulated by a -round MPC ProtocolL O(L)

• Theorem [SHT24, Theorem 3.4]. For constants and , any
transformer with width can be computed via a

-round -MPC protocol with

using machines, each with local memory.

• Corollary (Informal, SHT24 Cor. 3.5). Assume the “one-versus-two cycle” conjecture.

Then, for any constant , any transformer that solves the
graph connectivity requires either a width or a depth .
(Thus, log-depth is near-optimal for parameter-efficient transformers.)

0 < δ < δ′ < 1 γ > 0
T ∈ TransformerN

m,L,H,1,1 mH = O(Nδ)
R (1 + δ′ , δ′)

R = O (L
δ′ − δ)

q = O(N2) s = O(Nδ′)

ϵ > 0 T ∈ TransformerN
m,L,H,1,1

mH = Ω(N1−ϵ) L = Ω(log N)

What we have so far…
• Connection between transformers ↔ MPC protocols

• One simulates another.

• They share (in)abilities.

• (Im)possibility of solving the graph connectivity task.

• Logarithmic depth can solve it (while constant depth cannot)

• It might be optimal!

What we have so far…
• Connection between transformers ↔ MPC protocols

• One simulates another.

• They share (in)abilities.

• (Im)possibility of solving the graph connectivity task.

• Logarithmic depth can solve it (while constant depth cannot)

• It might be optimal!

• What else we can say?

• The superiority of transformers above other alternatives.
• … through a toy task 🧸.

A Toy Task: -hop Induction Heads ()k hopk
To study the separation between transformers versus non-parallel architectures

• From now: Decoder-only (causal) Transformers & Next-token Predictions.

• Induction heads task

• Find the token that follows the last previous occurrence of the final token in the input

sequence.

• E.g.) Given “…abcdebbdab”, the answer is ‘d’.

• A generalization: -hop induction heads task

• E.g.) Given “…abcdebbdab”, the answer of (i.e.,) is ‘e’.

• Motivated by multi-step reasoning tasks: “[…] Alice is a doctor. […] Bob’s mother is
Alice. […] What is the profession of Bob’s mother?”

k

hop2 k = 2

A Toy Task: -hop Induction Heads ()k hopk
To study the separation between transformers versus non-parallel architectures

• From now: Decoder-only (causal) Transformers & Next-token Predictions.

• Induction heads task

• Find the token that follows the last previous occurrence of the final token in the input

sequence.

• E.g.) Given “…abcdebbdab”, the answer is ‘d’.

• A generalization: -hop induction heads task

• E.g.) Given “…abcdebbdab”, the answer of (i.e.,) is ‘e’.

• Motivated by multi-step reasoning tasks: “[…] Alice is a doctor. […] Bob’s mother is
Alice. […] What is the profession of Bob’s mother?”

k

hop2 k = 2

A Toy Task: -hop Induction Heads ()k hopk
To study the separation between transformers versus non-parallel architectures

• From now: Decoder-only (causal) Transformers & Next-token Predictions.

• Induction heads task

• Find the token that follows the last previous occurrence of the final token in the input

sequence.

• E.g.) Given “…abcdebbdab”, the answer is ‘d’.

• A generalization: -hop induction heads task

• E.g.) Given “…abcdebbdab”, the answer of (i.e.,) is ‘e’.

• Motivated by multi-step reasoning tasks: “[…] Alice is a doctor. […] Bob’s mother is
Alice. […] What is the profession of Bob’s mother?”

k

hop2 k = 2

• For any and a vocabulary of size :

• Theorem (Sufficiency, SHT24 Thm 4.2). There exists a -layer 1-head
transformer with causal attention masks and a constant embedding dimension that
computes .

• Theorem (Necessity, SHT24 Cor 4.3). Assume the “one-versus-two cycle” conjecture.
Consider any even . Then, any decoder-only transformer that computes
requires either a width or a depth .

• The proof of the “necessity” is based on the proof of Theorem 3.4 of [SHT24] (“A transformer is simulated by an
MPC protocol.”) From the given that computes , we construct a multi-round MPC protocol that converts
one-or-two cycle graph into an input sequence and then simulates as its final output. In the end,
uniquely determines the number of cycles in the input graph.

k ≥ 1 ≤ N

(⌊log2 k⌋ + 2)

hopk

k = O(N) T hopk
mH = Ω(k0.99) L = Ω(log k)

T hopk
X T(X) T(X)N

Transformers for -hop Induction Headsk
Depth is (maybe) necessary and (surely) sufficient Θ(log k)

Transformers for -hop Induction Headsk
Learned Transformers with Adam: Learnable with log-depth!

• Empirical Setting:

• Curriculum learning mixture of for
, vocab size 4.

• Small GPT2-based models: ,
, , .

• Training: 100K steps of Adam.

• Observation:
• Sharp learnability threshold at

.

hopk
k ∈ {0,…,16}

m = 128
H = 4 L ∈ {2,3,4,5,6} N = 100

L ≈ ⌊log2 k⌋ + 2

What about Other Architectures?

Architecture Type
Requirements (“Width OR Depth”)

Width Depth / .

Transformers
with Dense Attention

Recurrent Architectures
(RNN, Mamba, …)

Transformers
with Sub-Quadratic Attention

1-Layer Transformers
with Chain of Thoughts

Ω(N0.99ξ) L = Ω(log N)

L = Ω(Nξ)

NCoT = Ω(Nξ)

When (for)k = Θ(Nξ) ξ < 1/6

Ω(N1−6ξ)

* : Additional number of tokens in the input sequence for CoT promptingNCoT

Ω(N1−6ξ)

Ω(N1−6ξ)

NCoT

L = Ω(Nξ)

What about Other Architectures?

Architecture Type
Requirements (“Width OR Depth”)

Width Depth / .

Transformers
with Dense Attention

Recurrent Architectures
(RNN, Mamba, …)

Transformers
with Sub-Quadratic Attention

1-Layer Transformers
with Chain of Thoughts

Ω(log0.99 N) L = Ω(log log N)

NCoT = Ω(log N)

When k = Θ(log N)

Ω̃(N)

* : Additional number of tokens in the input sequence for CoT promptingNCoT

NCoT

L = Ω(log N)

L = Ω(log N)Ω̃(N)

Ω̃(N)

Conclusion
• Parallelism is a central feature of transformers.

• Only a logarithmic scaling of depth and sublinear scaling of width (in)
suffices to build an expressive and well-performing transformer, even
theoretically.

• (Near)-quadratic computation of attention seems necessary for log-depth
transformers.

• Chain-of-thought (CoT) prompting is not enough for fixed-layer transformers
to beat log-depth transformers without CoT.

N

