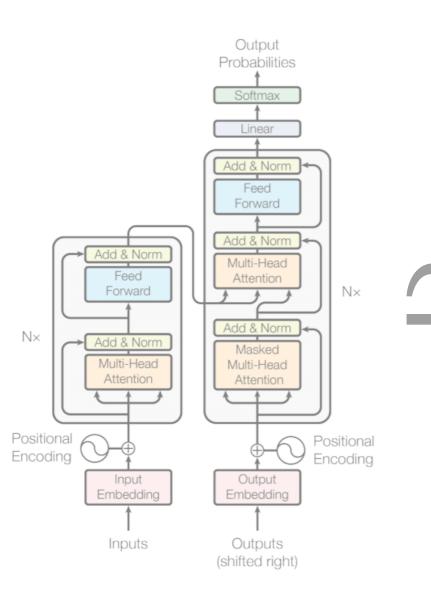
Viewing Log-Depth Transformers via the Lens of Distributed Computing

OptiML Group Meeting October 10th, 2024



Presented by Hanseul Cho

ing

Overview

- **Massively Parallel Computation (MPC)**
- Depth separation: transformers > alternative architectures.
 - Based on a toy task: k-hop induction task

- Main references:
 - lacksquareLogarithmic Depth. ICML 2024.
 - \bullet Halcrow, Bryan Perozzi, and Vahab Mirrokni. Understanding Transformer Reasoning Capabilities via Graph Algorithms. arXiv preprint. 2024.

• A new theoretical tool to understand the expressive power of transformers:

[SHT24] Clayton Sanford, Danial Hsu, and Matus Telgarsky. <u>Transformers, Parallel Computation, and</u>

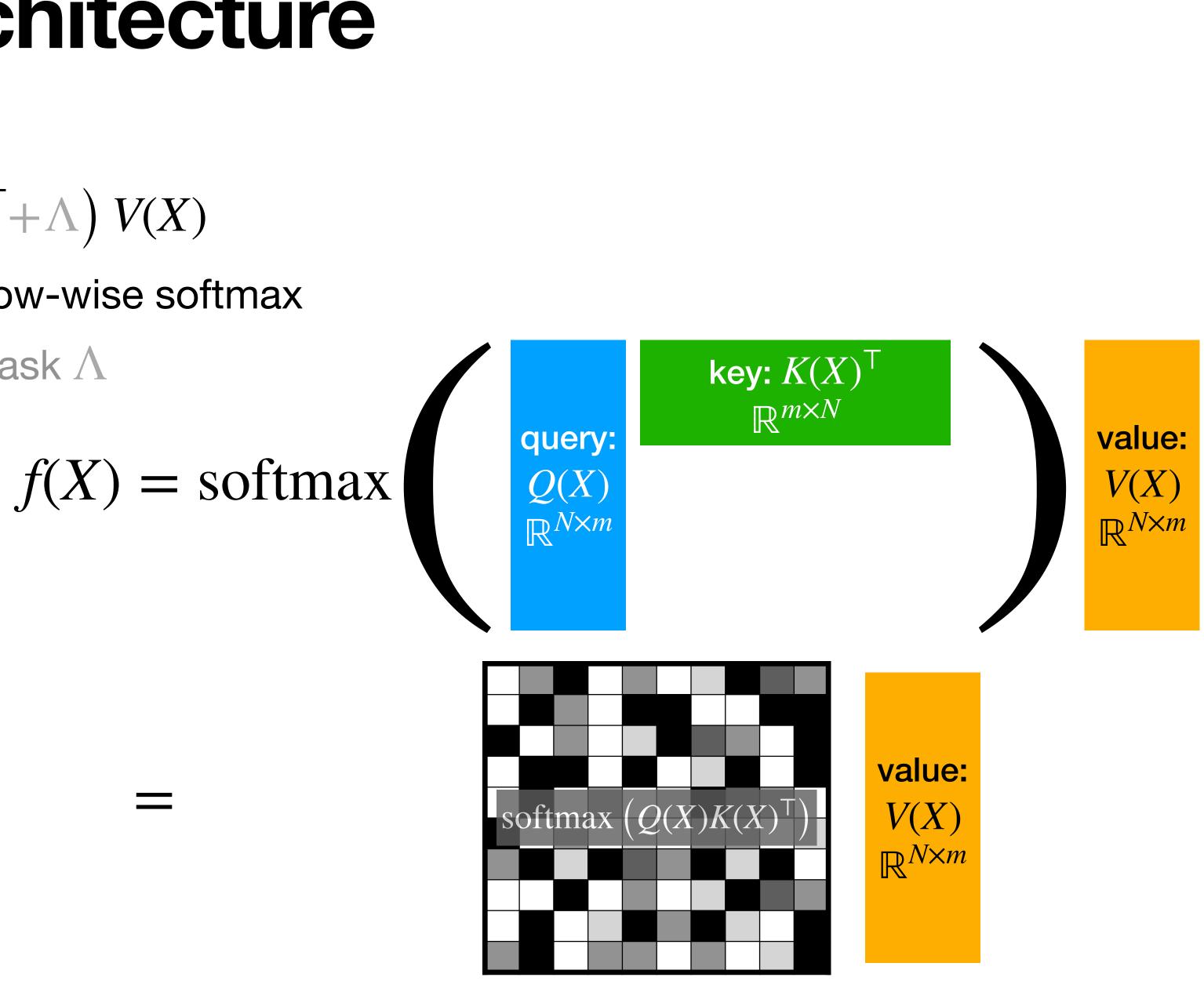
[SFHT+24] Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan

Contents

- 1. Transformer Architecture
- 2. Massively Parallel Computation (MPC) Model
- 3. Transformer DMPC Protocol
- 4. Separation between Architectures with k-hop Induction Head Task

Transformer Architecture

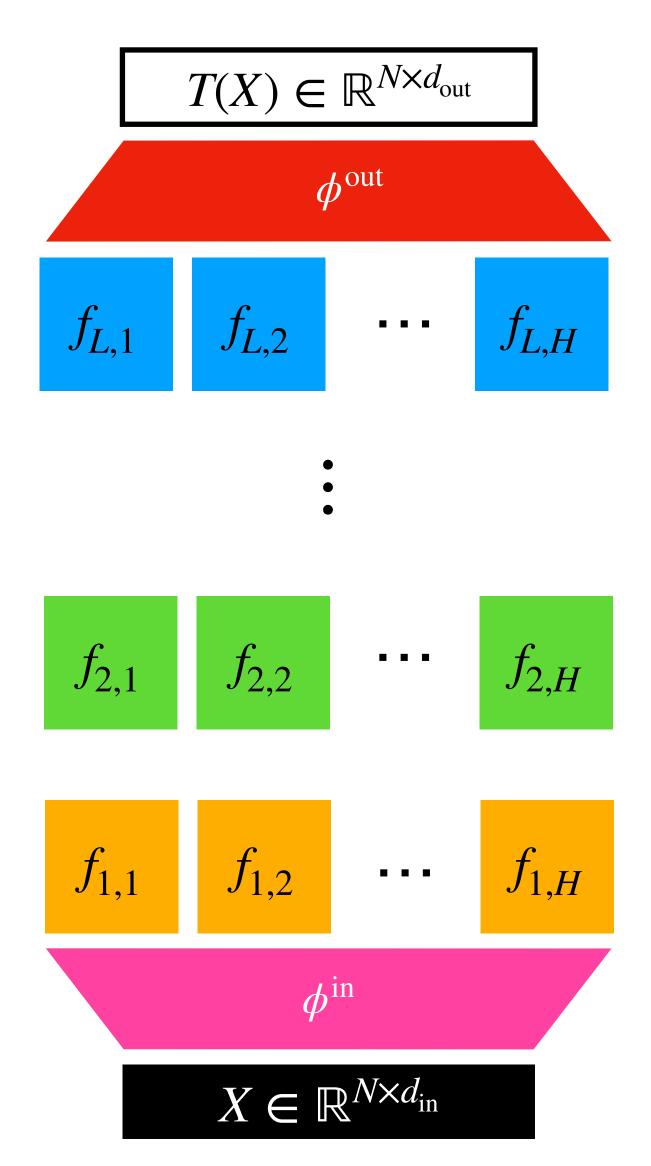
- Self-attention head:
 - $f(X) = \operatorname{softmax} \left(Q(X) K(X)^{\mathsf{T}} + \Lambda \right) V(X)$
 - $f, Q, K, V : \mathbb{R}^{N \times m} \to \mathbb{R}^{N \times m}$, row-wise softmax
 - $X = [x_1, \dots, x_N]^T$, attention mask Λ

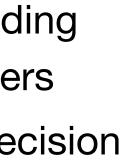


Transformer Architecture

- Self-attention head:
 - $f(X) = \operatorname{softmax} \left(Q(X) K(X)^{\top} + \Lambda \right) V(X)$
 - $f, Q, K, V : \mathbb{R}^{N \times m} \to \mathbb{R}^{N \times m}$, row-wise softmax
 - $X = [x_1, \dots, x_N]^T$, attention mask $\Lambda \in \{-\infty, 0\}^{N \times N}$
- Multi-head attention (with residual connection): • $g_l(X) = X + \sum_{h=1}^{H} f_{l,h}(X)$
- Multi-layer perceptrons (MLPs) per word (or row):
 - $\phi^{\text{in}} : \mathbb{R}^{N \times d_{\text{in}}} \to \mathbb{R}^{N \times m}, \ \phi^{\text{out}} : \mathbb{R}^{N \times m} \to \mathbb{R}^{N \times d_{\text{out}}}$
- **Transformer** $T \in \text{Transformer}_{m,L,H,d_{\text{in}},d_{\text{out}}}^{N}$:
 - $T(X) = (\phi^{\text{out}} \circ g_L \circ \cdots \circ g_1 \circ \phi^{\text{in}})(X)$

- No positional embedding
- No Normalization layers
- * $p = \Theta(\log N)$ -bit precision



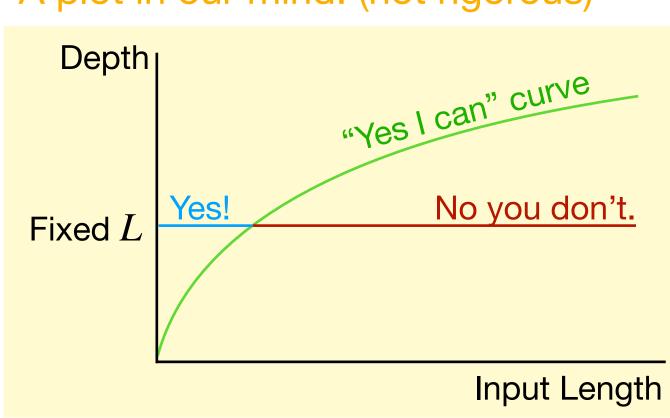


Theoretical Lenses to Study Transformers Specifically about their Expressive Power

- 1. Transformers as *machines that recognize formal languages*
 - Dyck language, star-free regular language ...
 - Fixed-size transformers cannot handle long inputs
- 2. Transformers as *circuits*
 - TC^0 , NC^1 ,... (do you remember?)
 - **Fixed-size transformers cannot** solve several *graph tasks* (e.g. graph connectivity)
- Transformers as *finite-state automata* 3.
 - Studies log-depth transformers but not even near-optimal

Theoretical Lenses to Study Transformers Specifically about their Expressive Power A plot in our mind: (not rigorous)

- 1. Transformers as *machines that recognize formal languages*
 - Dyck language, star-free regular language ...
 - Fixed-size transformers cannot handle long inputs
- 2. Transformers as *circuits*
 - TC^0 , NC^1 ,... (do you remember?)
 - **Fixed-size transformers cannot** solve several *graph tasks* (e.g. graph connectivity)
- Transformers as *finite-state automata* 3.
 - Studies log-depth transformers but not even near-optimal
- 4. (New!) Transformers as *communication protocols* (e.g. MPC)
 - Enable analysis via communication complexity & distributed computation
 - Logarithmic-depth transformers can solve several graph tasks (and they *might* be near-optimal!)



Massively Parallel Computation (MPC) [KSV10]

- Hadoop, and Spark.
- Goal:
 - between machines whose local memory is sublinear in input length N.

A theoretical model to study distributed computing frameworks e.g. <u>MapReduce</u>

• To design protocols that use fewer (e.g. $O(\log N)$) rounds of communication

Massively Parallel Computation (MPC) [KSV10]

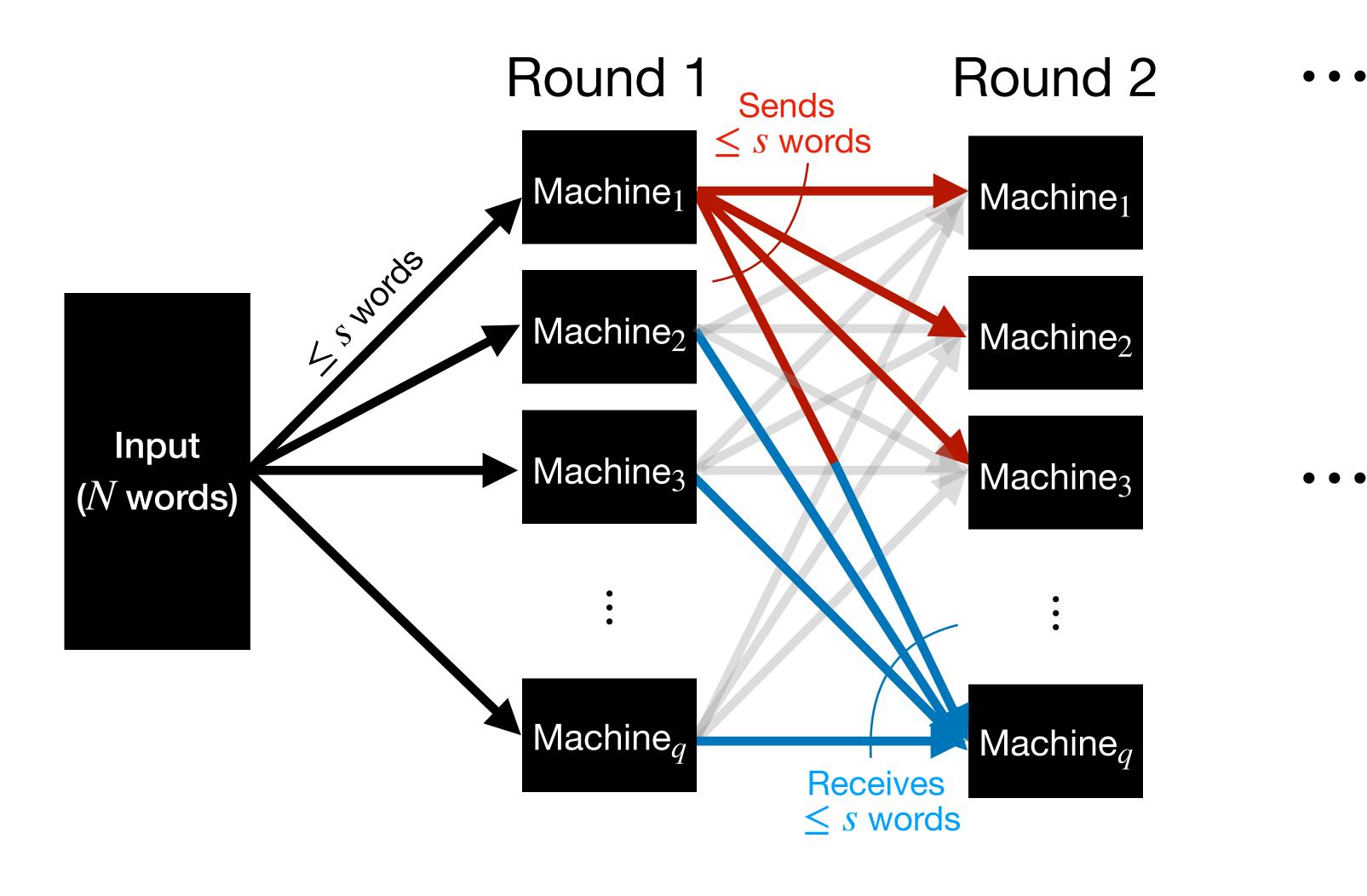
- Hadoop, and Spark.
- Goal:
 - between machines whose local memory is sublinear in input length N.
- Setup:
 - q machines with memory s = o(N) (words). Total memory $qs = \Omega(N)$.
 - Computation proceeds in rounds:

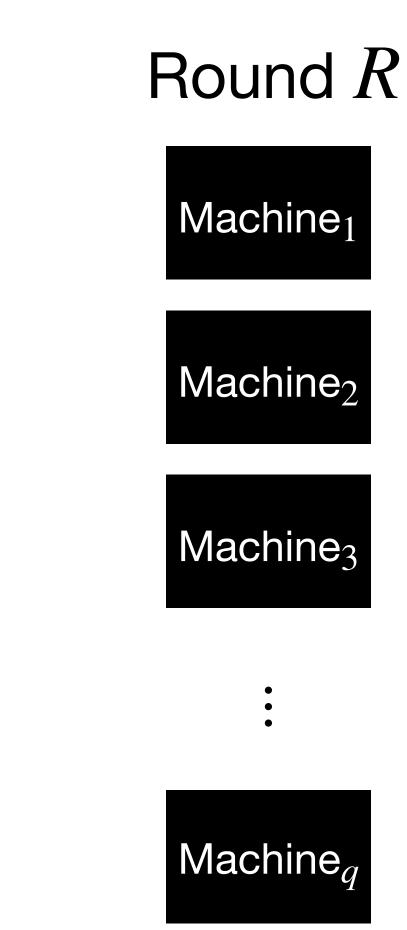
• A theoretical model to study *distributed computing frameworks* e.g. <u>MapReduce</u>,

To design protocols that use fewer (e.g. $O(\log N)$) rounds of communication

• In each round $r \in [R]$, each machine computes an arbitrary function of its local memory to prepare at most s words (in total) to send/distribute to other machines.

Massively Parallel Computation (MPC) [KSV10]







Massively Parallel Computation (MPC) [KSV10] Example: Counting unique words (Recall from Data Mining 101...)

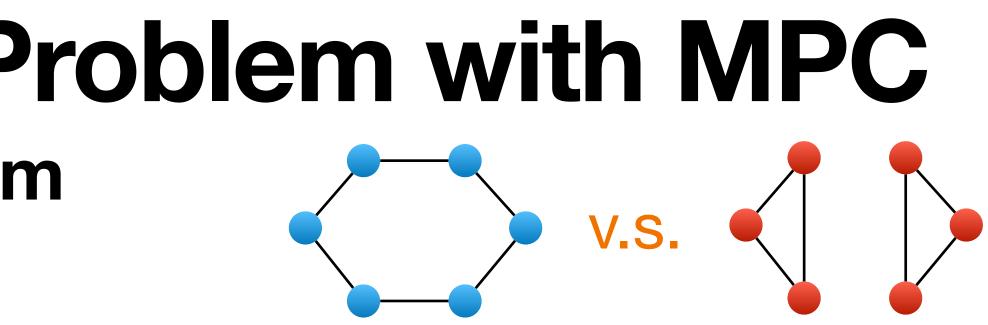
- Suppose we have an input with N, some of them are identical.
- Naive O(N)-time sequential algorithm: count one by one (use hash table).

Massively Parallel Computation (MPC) [KSV10] Example: Counting unique words (Recall from Data Mining 101...)

- Suppose we have an input with N, some of them are identical.
- Naive O(N)-time sequential algorithm: count one by one (use hash table).
- **Two rounds** of MPC is enough! (O(s)-time in parallel)
 - Round 1:
 - Each machine *i* computes a word frequency count $c_{w,i}$ for each word w it has. Choose a unique machine for each word (e.g., by hashing) and send the counts.
 - Round 2:
 - Add all received counts: $\sum_{i} c_{w,i}$. Done.

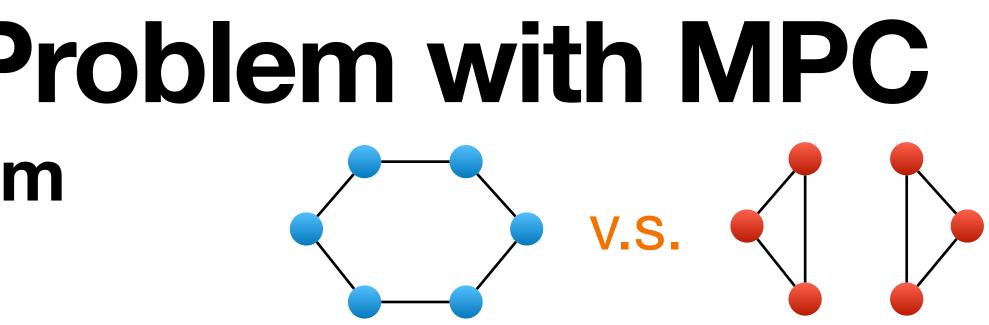
Graph Connectivity Problem with MPC "one-versus-two cycle" problem

- **Problem:** An undirected graph G with N vertices and N edges is given. Can you distinguish:
 - A single cycle on N vertices, and
 - A union of two cycles each on N/2 vertices?
- There exists a $O(\log N)$ -round MPC protocol (See <u>here</u>, Section 7.2, Algorithm 13)
 - By serializing G = (V, E) as $(u_1, v_1, u_2, v_2, \dots, u_{|E|}, v_{|E|})$, where $E = \{(u_i, v_i)\}_{i=1}^{|E|}$.
- Can we do better?



Graph Connectivity Problem with MPC "one-versus-two cycle" problem

- **Problem:** An undirected graph G with N vertices and N edges is given. Can you distinguish:
 - A single cycle on N vertices, and
 - A union of two cycles each on N/2 vertices?
- There exists a O(log N)-round MPC protocol (See here, Section 7.2, Algorithm 13)
 - By serializing G = (V, E) as $(u_1, v_1, u_2, v_2, \dots, u_{|E|}, v_{|E|})$, where $E = \{(u_i, v_i)\}_{i=1}^{|E|}$.
- Can we do better? A long-standing open problem! (But generally believed as "NO".)
- **Conjecture ("one-versus cycle" conjecture).** Let any $\gamma > 0$, $\delta \in (0,1)$, and N. Then, any (γ, δ) -MPC protocol that solves the one-versus-two cycle problem requires $\Omega(\log N)$ rounds.
 - (γ, δ) -MPC protocol uses $q = \Theta(N^{1+\gamma-\delta})$ machines with memory of $s = O(n^{\delta})$ words.



MPC Protocol Transformer A *R*-round MPC Protocol can be simulated by a depth O(R) transformer

• Theorem [SFHT+24, Theorem 8]. For constants $0 < \delta < \delta' < 1$ and $\gamma > 0$, any R-round (γ , δ)-MPC protocol on N inputs can be expressed as a transformer $T \in \text{Transformer}_{m,L,H,1,1}^N$ with depth

single head H = 1 and embedding dimension $m = O(N^{\delta'})$.

 $L = O\left(\frac{R(1+\gamma)^2}{\min\{(\delta'-\delta)^2, \delta^2\}}\right),$ nd embedding dimension $m = O(N^{\delta'}).$

MPC Protocol D Transformer A *R*-round MPC Protocol can be simulated by a depth O(R) transformer

• Theorem [SFHT+24, Theorem 8]. For constants $0 < \delta < \delta' < 1$ and $\gamma > 0$, any *R*-round (γ , δ)-MPC protocol on *N* inputs can be expressed as a transformer $T \in \text{Transformer}_{m,L,H,1,1}^N$ with depth

single head H = 1 and embedding dimension $m = O(N^{\delta'})$.

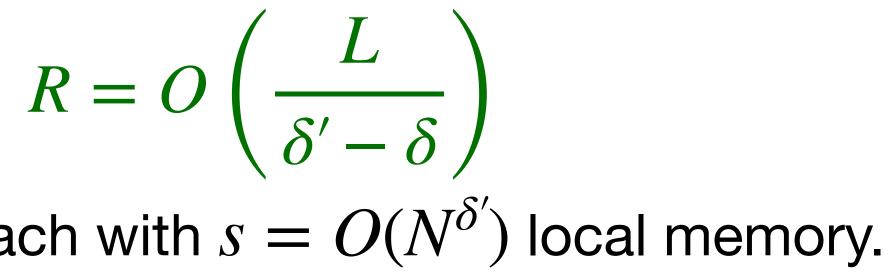
Corollary (Informal, SHT24 Cor. 3.3). There exists a $O(\log N)$ -layer 1-head transformer that identifies the connected components of any input graph (thus solving one-versus-two cycle problem).

$$L = O\left(\frac{R(1+\gamma)^2}{\min\{(\delta'-\delta)^2, \delta^2\}}\right),$$

MPC Protocol Transformer A depth L transformer can be simulated by a O(L)-round MPC Protocol

- Theorem [SHT24, Theorem 3.4]. For constants $0 < \delta < \delta' < 1$ and $\gamma > 0$, any transformer $T \in \text{Transformer}_{m.L.H.1.1}^N$ with width $mH = O(N^{\delta})$ can be computed via a *R*-round $(1 + \delta', \delta')$ -MPC protocol with

 - using $q = O(N^2)$ machines, each with $s = O(N^{\delta'})$ local memory.



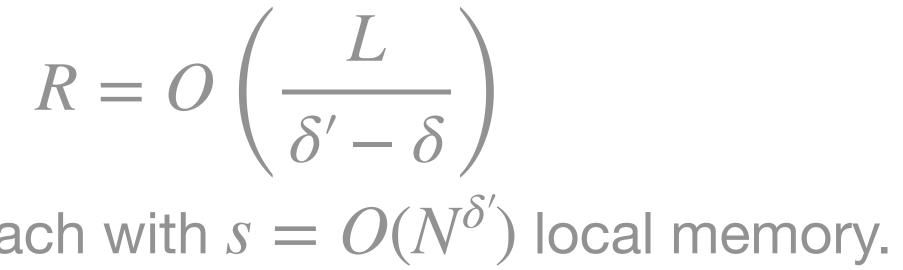
MPC Protocol Transformer A depth L transformer can be simulated by a O(L)-round MPC Protocol

R-round $(1 + \delta', \delta')$ -MPC protocol with

using $q = O(N^2)$ machines, each with $s = O(N^{\delta'})$ local memory.

(Thus, log-depth is near-optimal for parameter-efficient transformers.)

• Theorem [SHT24, Theorem 3.4]. For constants $0 < \delta < \delta' < 1$ and $\gamma > 0$, any transformer $T \in \text{Transformer}_{m,L,H,1,1}^N$ with width $mH = O(N^{\delta})$ can be computed via a



 Corollary (Informal, SHT24 Cor. 3.5). Assume the "one-versus-two cycle" conjecture. Then, for any constant $\epsilon > 0$, any transformer $T \in \text{Transformer}_{m,L,H,1,1}^N$ that solves the graph connectivity requires either a width $mH = \Omega(N^{1-\epsilon})$ or a depth $L = \Omega(\log N)$.

What we have so far...

- Connection between transformers
 MPC protocols
 - One simulates another.
 - They share (in)abilities.
- (Im)possibility of solving the graph connectivity task. Logarithmic depth can solve it (while constant depth cannot)

 - It *might be* optimal!

What we have so far...

- Connection between transformers
 MPC protocols
 - One simulates another.
 - They share (in)abilities.
- (Im)possibility of solving the graph connectivity task.
 - Logarithmic depth can solve it (while constant depth cannot)
 - It *might be* optimal!
- What else we can say?
 - The superiority of transformers above other alternatives.
 - ... through a toy task 🚜.

A Toy Task: k-hop Induction Heads (hop_k) To study the separation between transformers versus non-parallel architectures

From now: Decoder-only (causal) Transformers & Next-token Predictions.

A Toy Task: k-hop Induction Heads (hop_k) To study the separation between transformers versus non-parallel architectures

- From now: Decoder-only (causal) Transformers & Next-token Predictions.
- Induction heads task
 - sequence.
 - E.g.) Given "...abcdebbdab", the answer is 'd'.

• Find the token that follows the last previous occurrence of the final token in the input

A Toy Task: k-hop Induction Heads (hop_k) To study the separation between transformers versus non-parallel architectures

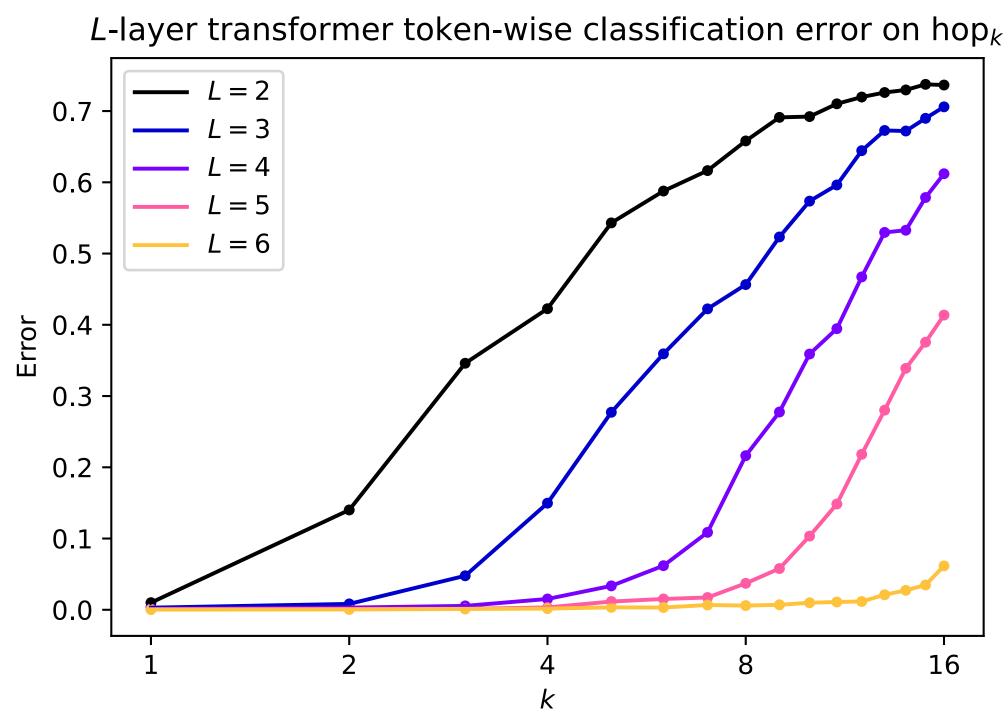
- From now: Decoder-only (causal) Transformers & Next-token Predictions.
- Induction heads task
 - Find the token that follows the last previous occurrence of the final token in the input sequence.
 - E.g.) Given "....abcdebbdab", the answer is 'd'.
- A generalization: *k*-hop induction heads task
 - E.g.) Given "...abcdebbdab", the answer of hop₂ (i.e., k = 2) is 'e'.
 - Motivated by *multi-step reasoning tasks*: "[...] Alice is a doctor. [...] Bob's mother is Alice. [...] What is the profession of Bob's mother?"

Transformers for *k***-hop Induction Heads Depth** $\Theta(\log k)$ is (maybe) necessary and (surely) sufficient

- For any $k \ge 1$ and a vocabulary of size $\le N$:
- Theorem (Sufficiency, SHT24 Thm 4.2). There exists a $(|\log_2 k| + 2)$ -layer 1-head transformer with causal attention masks and a constant embedding dimension that computes hop_k .
- Theorem (Necessity, SHT24 Cor 4.3). Assume the "one-versus-two cycle" conjecture. Consider any even $k = O(\sqrt{N})$. Then, any decoder-only transformer T that computes hop_k requires either a width $mH = \Omega(k^{0.99})$ or a depth $L = \Omega(\log k)$.
- The proof of the "necessity" is based on the proof of Theorem 3.4 of [SHT24] ("A transformer is simulated by an MPC protocol.") From the given T that computes hop_k , we construct a multi-round MPC protocol that converts one-or-two cycle graph into an input sequence X and then simulates T(X) as its final output. In the end, $T(X)_N$ uniquely determines the number of cycles in the input graph.

Transformers for *k***-hop Induction Heads** Learned Transformers with Adam: Learnable with log-depth!

- Empirical Setting:
 - Curriculum learning mixture of hop_k for $k \in \{0, ..., 16\}$, vocab size 4.
 - Small GPT2-based models: m = 128, $H = 4, L \in \{2, 3, 4, 5, 6\}, N = 100.$
 - Training: 100K steps of Adam.
- **Observation:**
 - Sharp learnability threshold at $L \approx \lfloor \log_2 k \rfloor + 2.$



What about Other Architectures? When $k = \Theta(N^{\xi})$ (for $\xi < 1/6$)

Architecture Type

Transformers with Dense Attention

Recurrent Architectures (RNN, Mamba, ...)

Transformers with Sub-Quadratic Attention

1-Layer Transformers with Chain of Thoughts

* $N_{\rm CoT}$: Additional number of tokens in the input sequence for CoT prompting

Requirements ("Width OR Depth")	
Width	Depth / N _{CoT}
$\Omega(N^{0.99\xi})$	$L = \Omega(\log N)$
$\Omega(N^{1-6\xi})$	$L = \Omega(N^{\xi})$
$\Omega(N^{1-6\xi})$	$L = \Omega(N^{\xi})$
$\Omega(N^{1-6\xi})$	$N_{\rm CoT} = \Omega(N^{\xi})$

What about Other Architectures? When $k = \Theta(\log N)$

Architecture Type Transformers with Dense Attention

Recurrent Architectures (RNN, Mamba, ...)

Transformers with Sub-Quadratic Attention

1-Layer Transformers with Chain of Thoughts

* $N_{\rm CoT}$: Additional number of tokens in the input sequence for CoT prompting

Requirements ("Width OR Depth")	
Width	Depth / N _{CoT}
$\Omega(\log^{0.99} N)$	$L = \Omega(\log \log N)$
$\tilde{\Omega}(N)$	$L = \Omega(\log N)$
$\tilde{\Omega}(N)$	$L = \Omega(\log N)$
$\tilde{\Omega}(N)$	$N_{\rm CoT} = \Omega(\log N)$

Conclusion

- Parallelism is a central feature of transformers.
- Only a logarithmic scaling of depth and sublinear scaling of width (in N) suffices to build an expressive and well-performing transformer, even theoretically.
- transformers.
- to beat log-depth transformers without CoT.

(Near)-quadratic computation of attention seems necessary for log-depth

Chain-of-thought (CoT) prompting is not enough for fixed-layer transformers