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Overview
• A new theoretical tool to understand the expressive power of transformers: 

Massively Parallel Computation (MPC)


• Depth separation: transformers > alternative architectures.


• Based on a toy task: -hop induction task


• Main references:

• [SHT24] Clayton Sanford, Danial Hsu, and Matus Telgarsky. Transformers, Parallel Computation, and 

Logarithmic Depth. ICML 2024.

• [SFHT+24] Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan 

Halcrow, Bryan Perozzi, and Vahab Mirrokni. Understanding Transformer Reasoning Capabilities via 
Graph Algorithms. arXiv preprint. 2024.
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Transformer Architecture
• Self-attention head: 

• 


• , row-wise softmax


• , attention mask 


• Multi-head attention: 

• 


• Multi-layer perceptrons (MLPs) per word (or row): 

• 


• Transformer : 

•

f(X) = softmax (Q(X)K(X)⊤+Λ) V(X)
f, Q, K, V : ℝN×m → ℝN×m

X = [x1, ⋯, xN]⊤ Λ

gl(X) = X+ ∑H
h=1 fl,h(X)

ϕin : ℝN×din → ℝN×m, ϕout : ℝN×m → ℝN×dout

T ∈ 𝖳𝗋𝖺𝗇𝗌𝖿𝗈𝗋𝗆𝖾𝗋m,L,H,din,dout

T(X) = (ϕout ∘ gL ∘ ⋯ ∘ g1 ∘ ϕin)(X)

query: 
 Q(X)

ℝN×m

key:  K(X)⊤

ℝm×N

f(X) = softmax( ) value: 
 V(X)

ℝN×m

= value: 
 V(X)

ℝN×m
softmax (Q(X)K(X)⊤)



Transformer Architecture
• Self-attention head: 

• 


• , row-wise softmax


• , attention mask 


• Multi-head attention (with residual connection): 

• 


• Multi-layer perceptrons (MLPs) per word (or row): 

• 


• Transformer : 

•

f(X) = softmax (Q(X)K(X)⊤+Λ) V(X)
f, Q, K, V : ℝN×m → ℝN×m

X = [x1, ⋯, xN]⊤ Λ ∈ {−∞,0}N×N

gl(X) = X+ ∑H
h=1 fl,h(X)

ϕin : ℝN×din → ℝN×m, ϕout : ℝN×m → ℝN×dout

T ∈ 𝖳𝗋𝖺𝗇𝗌𝖿𝗈𝗋𝗆𝖾𝗋N
m,L,H,din,dout

T(X) = (ϕout ∘ gL ∘ ⋯ ∘ g1 ∘ ϕin)(X)

f1,1 f1,2 f1,H

f2,1 f2,2 f2,H

fL,1 fL,2 fL,H

X ∈ ℝN×din

…

…

…

⋮

ϕin

ϕout

T(X) ∈ ℝN×dout

* No positional embedding

* No Normalization layers

* -bit precisionp = Θ(log N)



1. Transformers as machines that recognize formal languages

• Dyck language, star-free regular language …

• Fixed-size transformers cannot handle long inputs


2. Transformers as circuits


• , ,… (do you remember?)

• Fixed-size transformers cannot solve several graph tasks (e.g. graph connectivity)


3. Transformers as finite-state automata 

• Studies log-depth transformers but not even near-optimal


4. (New!) Transformers as communication protocols (e.g. MPC) 

• Enable analysis via communication complexity & distributed computation


• Logarithmic-depth transformers can solve several graph tasks (and they are near-optimal!)

TC0 NC1

Theoretical Lenses to Study Transformers
Specifically about their Expressive Power



1. Transformers as machines that recognize formal languages

• Dyck language, star-free regular language …

• Fixed-size transformers cannot handle long inputs


2. Transformers as circuits


• , ,… (do you remember?)

• Fixed-size transformers cannot solve several graph tasks (e.g. graph connectivity)


3. Transformers as finite-state automata 

• Studies log-depth transformers but not even near-optimal


4. (New!) Transformers as communication protocols (e.g. MPC) 

• Enable analysis via communication complexity & distributed computation


• Logarithmic-depth transformers can solve several graph tasks (and they might be near-optimal!)

TC0 NC1

Theoretical Lenses to Study Transformers
Specifically about their Expressive Power

“Yes I can” curve

Fixed L

Depth

Input Length

Yes! No you don’t.

A plot in our mind: (not rigorous)



Massively Parallel Computation (MPC) [KSV10]

• A theoretical model to study distributed computing frameworks e.g. MapReduce, 
Hadoop, and Spark.


• Goal: 


• To design protocols that use fewer (e.g. ) rounds of communication 
between machines whose local memory is sublinear in input length .

O(log N)
N

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf
https://en.wikipedia.org/wiki/MapReduce


Massively Parallel Computation (MPC) [KSV10]

• A theoretical model to study distributed computing frameworks e.g. MapReduce, 
Hadoop, and Spark.


• Goal: 


• To design protocols that use fewer (e.g. ) rounds of communication 
between machines whose local memory is sublinear in input length .


• Setup:


•  machines with memory  (words). Total memory .

• Computation proceeds in rounds:


• In each round , each machine computes an arbitrary function of its local 
memory to prepare at most  words (in total) to send/distribute to other machines.

O(log N)
N

q s = o(N) qs = Ω(N)

r ∈ [R]
s

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf
https://en.wikipedia.org/wiki/MapReduce


Massively Parallel Computation (MPC) [KSV10]

Input 
(  words)N

Machine1

Machine2

Machine3

Machineq

⋮

Machine1

Machine2

Machine3

Machineq

⋮

Machine1

Machine2

Machine3

Machineq

⋮

⋯

Round 1 Round 2 Round R

 w
ord

s

≤
s

Sends

 words≤ s

Receives

 words≤ s

⋯

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf


Massively Parallel Computation (MPC) [KSV10]
Example: Counting unique words (Recall from Data Mining 101…)

• Suppose we have an input with , some of them are identical.


• Naive -time sequential algorithm: count one by one (use hash table).


• Two rounds of MPC is enough! ( -time in parallel)

• Round 1: 


• Each machine  computes word frequency count  for each word .

• Choose a unique machine for each word (e.g., by hashing) and send the counts.


• Round 2:


• Add all received counts: . — Done.

N

O(N)

O(s)

i cw,i w

∑i cw,i

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf


Massively Parallel Computation (MPC) [KSV10]
Example: Counting unique words (Recall from Data Mining 101…)

• Suppose we have an input with , some of them are identical.


• Naive -time sequential algorithm: count one by one (use hash table).


• Two rounds of MPC is enough! ( -time in parallel)

• Round 1: 


• Each machine  computes a word frequency count  for each word  it has.

• Choose a unique machine for each word (e.g., by hashing) and send the counts.


• Round 2:


• Add all received counts: . — Done.

N

O(N)

O(s)

i cw,i w

∑i cw,i

https://theory.stanford.edu/~sergei/papers/soda10-mrc.pdf


Graph Connectivity Problem with MPC
“one-versus-two cycle” problem

• Problem: An undirected graph  with  vertices and  edges is given. Can you distinguish:

• A single cycle on  vertices, and

• A union of two cycles each on  vertices?


• There exists a -round MPC protocol (See here, Section 7.2, Algorithm 13) 


• By serializing  as , where  .


• Can we do better? — A long-standing open problem!


• Conjecture (“one-versus cycle” conjecture). Let any , , and . Then, any 
-MPC protocol that solves the one-versus-two cycle problem requires  rounds. 


• -MPC protocol uses  machines with memory of  words.

G N N
N

N/2

O(log N)

G = (V, E) (u1, v1, u2, v2, . . . , u|E|, v|E|) E = {(ui, vi)}|E|
i=1

γ > 0 δ ∈ (0,1) N (γ, δ)
Ω(log N)

(γ, δ) q = Θ(N1+γ−δ) s = O(nδ)

v.s.

https://www.andrew.cmu.edu/user/moseleyb/papers/MPC-Tutorial.pdf


Graph Connectivity Problem with MPC
“one-versus-two cycle” problem

• Problem: An undirected graph  with  vertices and  edges is given. Can you distinguish:

• A single cycle on  vertices, and

• A union of two cycles each on  vertices?


• There exists a -round MPC protocol (See here, Section 7.2, Algorithm 13) 


• By serializing  as , where  .


• Can we do better? — A long-standing open problem! (But generally believed as “NO”.)


• Conjecture (“one-versus cycle” conjecture). Let any , , and . Then, any 
-MPC protocol that solves the one-versus-two cycle problem requires  rounds. 


• -MPC protocol uses  machines with memory of  words.

G N N
N

N/2

O(log N)
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v.s.

https://www.andrew.cmu.edu/user/moseleyb/papers/MPC-Tutorial.pdf


MPC Protocol  ➡  Transformer
A -round MPC Protocol can be simulated by a depth  transformerR O(R)

• Theorem [SFHT+24, Theorem 8]. For constants  and , 
any -round -MPC protocol on  inputs can be expressed as a 
transformer  with depth 


,


single head  and embedding dimension .


• Corollary (Informal, SHT24 Cor. 3.3). There exists a -layer 1-head 
transformer that identifies the connected components of any input graph (thus 
solving one-versus-two cycle problem).

0 < δ < δ′ < 1 γ > 0
R (γ, δ) N

T ∈ TransformerN
m,L,H,1,1

L = O ( R(1 + γ)2

min{(δ′ − δ)2, δ2} )
H = 1 m = O(Nδ′ )

O(log N)



MPC Protocol  ➡  Transformer
A -round MPC Protocol can be simulated by a depth  transformerR O(R)

• Theorem [SFHT+24, Theorem 8]. For constants  and , 
any -round -MPC protocol on  inputs can be expressed as a 
transformer  with depth 


,


single head  and embedding dimension .


• Corollary (Informal, SHT24 Cor. 3.3). There exists a -layer 1-head 
transformer that identifies the connected components of any input graph (thus 
solving one-versus-two cycle problem).

0 < δ < δ′ < 1 γ > 0
R (γ, δ) N

T ∈ TransformerN
m,L,H,1,1

L = O ( R(1 + γ)2

min{(δ′ − δ)2, δ2} )
H = 1 m = O(Nδ′ )

O(log N)



MPC Protocol  ⬅  Transformer
A depth  transformer can be simulated by a -round MPC ProtocolL O(L)

• Theorem [SHT24, Theorem 3.4]. For constants  and , any 
transformer  with width  can be computed via a 

-round -MPC protocol with 





using  machines, each with  local memory.

• Corollary (Informal, SHT24 Cor 3.5). Assume the “one-versus-two cycle” conjecture. 

Then, for any constant , any transformer  that solves the 
graph connectivity requires either a width  or a depth . 
(Thus, log-depth is near-optimal for parameter-efficient transformers.)

0 < δ < δ′ < 1 γ > 0
T ∈ TransformerN

m,L,H,1,1 mH = O(Nδ)
R (1 + δ′ , δ′ )

R = O ( L
δ′ − δ )

q = O(N2) s = O(Nδ′ )

ϵ > 0 T ∈ TransformerN
m,L,H,1,1

mH = Ω(N1−ϵ) L = Ω(log N)



MPC Protocol  ⬅  Transformer
A depth  transformer can be simulated by a -round MPC ProtocolL O(L)

• Theorem [SHT24, Theorem 3.4]. For constants  and , any 
transformer  with width  can be computed via a 

-round -MPC protocol with 





using  machines, each with  local memory.

• Corollary (Informal, SHT24 Cor. 3.5). Assume the “one-versus-two cycle” conjecture. 

Then, for any constant , any transformer  that solves the 
graph connectivity requires either a width  or a depth . 
(Thus, log-depth is near-optimal for parameter-efficient transformers.)

0 < δ < δ′ < 1 γ > 0
T ∈ TransformerN

m,L,H,1,1 mH = O(Nδ)
R (1 + δ′ , δ′ )

R = O ( L
δ′ − δ )

q = O(N2) s = O(Nδ′ )

ϵ > 0 T ∈ TransformerN
m,L,H,1,1

mH = Ω(N1−ϵ) L = Ω(log N)



What we have so far…
• Connection between transformers ↔ MPC protocols

• One simulates another.

• They share (in)abilities.


• (Im)possibility of solving the graph connectivity task.

• Logarithmic depth can solve it (while constant depth cannot)

• It might be optimal!



What we have so far…
• Connection between transformers ↔ MPC protocols

• One simulates another.

• They share (in)abilities.


• (Im)possibility of solving the graph connectivity task.

• Logarithmic depth can solve it (while constant depth cannot)

• It might be optimal!


• What else we can say? 

• The superiority of transformers above other alternatives. 
• … through a toy task 🧸.



A Toy Task: -hop Induction Heads ( )k hopk
To study the separation between transformers versus non-parallel architectures

• From now: Decoder-only (causal) Transformers  & Next-token Predictions.


• Induction heads task

• Find the token that follows the last previous occurrence of the final token in the input 

sequence.

• E.g.) Given “…abcdebbdab”, the answer is ‘d’.


• A generalization: -hop induction heads task 


• E.g.) Given “…abcdebbdab”, the answer of  (i.e., ) is ‘e’.


• Motivated by multi-step reasoning tasks: “[…] Alice is a doctor. […] Bob’s mother is 
Alice.  […] What is the profession of Bob’s mother?”

k

hop2 k = 2
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• For any  and a vocabulary of size : 

• Theorem (Sufficiency, SHT24 Thm 4.2). There exists a -layer 1-head 
transformer with causal attention masks and a constant embedding dimension that 
computes .


• Theorem (Necessity, SHT24 Cor 4.3). Assume the “one-versus-two cycle” conjecture. 
Consider any even . Then, any decoder-only transformer  that computes  
requires either a width  or a depth .


• The proof of the “necessity” is based on the proof of Theorem 3.4 of [SHT24] (“A transformer is simulated by an 
MPC protocol.”) From the given  that computes , we construct a multi-round MPC protocol that converts 
one-or-two cycle graph into an input sequence  and then simulates  as its final output. In the end,  
uniquely determines the number of cycles in the input graph.

k ≥ 1 ≤ N

(⌊log2 k⌋ + 2)

hopk

k = O( N) T hopk
mH = Ω(k0.99) L = Ω(log k)

T hopk
X T(X) T(X)N

Transformers for -hop Induction Headsk
Depth  is (maybe) necessary and (surely) sufficient Θ(log k)



Transformers for -hop Induction Headsk
Learned Transformers with Adam: Learnable with log-depth!

• Empirical Setting: 

• Curriculum learning mixture of  for 
, vocab size 4.


• Small GPT2-based models: , 
, , .


• Training: 100K steps of Adam.


• Observation: 
• Sharp learnability threshold at 

.

hopk
k ∈ {0,…,16}

m = 128
H = 4 L ∈ {2,3,4,5,6} N = 100

L ≈ ⌊log2 k⌋ + 2



What about Other Architectures?

Architecture Type
Requirements  (“Width OR Depth”)

Width Depth /        . 

Transformers 
with Dense Attention

Recurrent Architectures 
(RNN, Mamba, …)

Transformers  
with Sub-Quadratic Attention

1-Layer Transformers 
with Chain of Thoughts

Ω(N0.99ξ) L = Ω(log N)

L = Ω(Nξ)

NCoT = Ω(Nξ)

When  (for )k = Θ(Nξ) ξ < 1/6

Ω(N1−6ξ)

* : Additional number of tokens in the input sequence for CoT promptingNCoT

Ω(N1−6ξ)

Ω(N1−6ξ)

NCoT

L = Ω(Nξ)



What about Other Architectures?

Architecture Type
Requirements  (“Width OR Depth”)

Width Depth /        . 

Transformers 
with Dense Attention

Recurrent Architectures 
(RNN, Mamba, …)

Transformers  
with Sub-Quadratic Attention

1-Layer Transformers 
with Chain of Thoughts

Ω(log0.99 N) L = Ω(log log N)

NCoT = Ω(log N)

When k = Θ(log N)

Ω̃(N)

* : Additional number of tokens in the input sequence for CoT promptingNCoT

NCoT

L = Ω(log N)

L = Ω(log N)Ω̃(N)

Ω̃(N)



Conclusion
• Parallelism is a central feature of transformers. 

• Only a logarithmic scaling of depth and sublinear scaling of width (in ) 
suffices to build an expressive and well-performing transformer, even 
theoretically.


• (Near)-quadratic computation of attention seems necessary for log-depth 
transformers.


• Chain-of-thought (CoT) prompting is not enough for fixed-layer transformers 
to beat log-depth transformers without CoT.

N


