PENCIL®%:;
Long Thoughts with Short Memory

Chenxiao Yang, Nathan Srebro, David McAllester, and Zhiyuan Li

OptiML Group Meeting
April 4th, 2025

Presented by Hanseul Cho @ OptiML

Optimization & Machine Learning

Overview

Pen \

Pencil “,

Overview

Pen \

Pencil “,

NOT erasable: Write-Only

Erasable: Write (.J Erase

Once written, intermediate steps
must remain in the scratchpad

Unless needed, intermediate steps
can be erased from the scratchpad

Space-inefficient

Space-efficient

Error-prone due to wrong scratches

Can correct wrong scratches

3/29

Overview

Today’s
Presentation
Chain-of-Thought (CoT) \\ PENCIL &,
NOT erasable: Write-Only Erasable: Write (. Erase
Once written, intermediate steps Unless needed, intermediate steps
must remain in the scratchpad can be erased from the scratchpad
Space-inefficient Space-efficient
Error-prone due to wrong scratches Can correct wrong scratches

4/29

Chain-of-Thought (CoT) \ [Wei et al., 2022]

= Scratchpad [Nye et al., 2021]

* Longer thoughts for better reasoning at inference time.
e Oiriginally a prompting technique for LLMs [Wei et al., 2022].
« GPT3’s Zero-shot CoT is also popular (“Let’s think step by step.” [Kojima et al., 2022])

* Most Recent LLMs are intentionally designed to do CoT (e.g., DeepSeek-R1, OpenAl o1 & 03)

5/29

Chain-of-Thought (CoT) \ [Wei et al., 2022]

= Scratchpad [Nye et al., 2021]

Longer thoughts for better reasoning at inference time.

Originally a prompting technique for LLMs [Wei et al., 2022].

« GPT3’s Zero-shot CoT is also popular (“Let’s think step by step.” [Kojima et al., 2022])

Most Recent LLMs are intentionally designed to do CoT (e.g., DeepSeek-R1, OpenAl 01 & 03)

Theoretically better expressivity of Transformers

« Vanilla Transformer (no CoT): can’t solve tasks outside of TC? [Merril & Sabharwal, 2023]

« Transformer with polynomial-length CoT: can solve tasks in P [Merril & Sabharwal, 2024]

6/29

Chain-of-Thought (CoT) \ [Wei et al., 2022]

What’s bad about it? (Specifically for Transformers)

e Because of its write-only limitation, it often suffers from:

e Excessive memory resources

* The attention layer can take quadratically growing memory in context length

e® Excessive computation (in FLOPs)

* Each next-token prediction step can take linearly growing computation in context length

©® Long-context reasoning is complex in general

* Reasoning performance tends to become worse as the context gets longer

7/29

Method: PENCIL%,

Pencil ENables Context-efficient Inference and Learning

e Erasable CoT: Next-Token Generator + Reduction Rule

* Add 3 special tokens to vocabulary: [CALL], [SEP], [RETURN]

e Reduction Rule: C [CALL] T [SEP] A [RETURN] => CA
» C for “Context” (Upcoming subproblems)
» T for “Thoughts” (Intermediate steps; NOT useful for future reasoning; to be deleted)
* A for “Answer” (Answer of a subproblem; useful for future reasoning)
« To allow unique parsing, T can’t have [CALL]; A can’t have [SEP] & [RETURN].

8/29

Method: PENCIL®:

Pencil ENables Context-efficient Inference and Learning

* Erasable CoT: Next-Token Generator (=pencil) + Reduction Rule (=eraser)
* Intuitively, the PENCIL reduction rule works GREEDILY:

 Whenever LM generates [RETURN];
1. Find the most recent [SEP];
2. Find the most recent [CALL];
3. Apply the reductionrule C [CALL] T [SEP] A [RETURN] = CA

» Otherwise, keep repeating the next-token generation.

» If LM generates [EOS], then halt the inference.

9/29

Example: Arithmetic with CoT\

Prompt: Compute 3 x5 +2 x4. [EndOfPrompt]

* Response:
* There are two multiplications and one addition.
» Let’s follow the order of operations.

10/29

Example: Arithmetic with CoT\

Prompt: Compute 3 x5 +2 x4. [EndOfPrompt]

* Response:
* There are two multiplications and one addition.
» Let’s follow the order of operations.
« Computing the first multiplication, we have 3 x 5 = 15.
* The first multiplication equals 15.

11/29

15

Example: Arithmetic with CoT\

Prompt: Compute 3 x5 +2 x4. [EndOfPrompt]

* Response:
* There are two multiplications and one addition.

Let’s follow the order of operations.

Computing the first multiplication, we have 3 x 5 = 15.

The first multiplication equals 15.

Computing the second multiplication, we have 2 x 4 = 8.

The second multiplication equals 8.

12/29

15

Example: Arithmetic with CoT\

Prompt: Compute 3 x5 +2 x4. [EndOfPrompt]

* Response:
* There are two multiplications and one addition.
» Let’s follow the order of operations.
« Computing the first multiplication, we have 3 x 5 = 15.
* The first multiplication equals 15.
* Computing the second multiplication, we have 2 x 4 = 8.
* The second multiplication equals 8.
* Now we should add them: 15 + 8 = 23.

13/29

Example: Arithmetic with CoT\

Prompt: Compute 3 x5 +2 x4. [EndOfPrompt]

* Response:
* There are two multiplications and one addition.
» Let’s follow the order of operations.
« Computing the first multiplication, we have 3 x 5 = 15.
* The first multiplication equals 15.
* Computing the second multiplication, we have 2 x 4 = 8.
* The second multiplication equals 8.
* Now we should add them: 15 + 8 = 23.
 The answer is 23. [EOS]

14/29

Example: Arithmetic with PENCIL®,, e seusen

Underlined: Tokens to be

Prompt: Compute 3 x5 + 2 x 4. [EndOfPrompt] deleted by the reduction rule

15/29

Example: Arithmetic with PENCIL®,, e seusen

Underlined: Tokens to be

Prompt: Compute 3 x5 + 2 x 4. [EndOfPrompt] deleted by the reduction rule

. . [cALL] There are two multiplications and one addition. Let’s follow the order of operations.
... : Prompt (omitted) /.

[cALL] Computing the first multiplication, we have 3 x 5 = 15.

,L : Generation Stage [SEP] The first multiplication equals 15. [RETURN]

<&]: Reduction stage
@ - C [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.)

16/29

Example: Arithmetic with PENCIL®,, e seusen

Underlined: Tokens to be

Prompt: Compute 3 x5 + 2 x 4. [EndOfPrompt] deleted by the reduction rule

. . [cALL] There are two multiplications and one addition. Let’s follow the order of operations.
... : Prompt (omitted) /.
J

[cALL] Computing the first multiplication, we have 3 x 5 = 15.

,L : Generation Stage [SEP] The first multiplication equals 15. [RETURN]

<&]: Reduction stage

@ = |... [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

()

@ e ,./... [cALL] Computing the second multiplication, we have 2 x 4 = 8.

[SEP] The second multiplication equals 8. [RETURN]

[CcALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

. [cALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15. J
@ = | The second multiplication equals 8.)

17/29

v

Example: Arithmetic with PENCIL®,, e seusen

Underlined: Tokens to be

Prompt: Compute 3 x5 + 2 x 4. [EndOfPrompt] deleted by the reduction rule

... : Prompt (omitted)
Z. : Generation stage

<&]: Reduction stage

. [cALL] There are two multiplications and one addition. Let’s follow the order of operations.
[cALL] Computing the first multiplication, we have 3 x 5 = 15.

[SEP] The first multiplication equals 15. [RETURN]

@ - C [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

. [cALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
"{__- [CALL] Computing the second multiplication, we have 2 x 4 = 8.

[SEP] The second multiplication equals 8. [RETURN]

@ . | ... [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
= | The second multiplication equals 8.

. [cALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
The second multiplication equals 8. Now we should add them: 15 + 8 = 23.

[SEP] The answer is 23. [RETURN]

<Z| : C The answer is 23.

A A A) W

18/29

Example: Arithmetic with PENCIL®.

Underlined: Tokens to be

Prompt: Compute 3 x5 + 2 x 4. [EndOfPrompt] deleted by the reduction rule

... : Prompt (omitted)
Z. : Generation stage
<&]: Reduction stage

Yellow: Newly generated tokens

. [cALL] There are two multiplications and one addition. Let’s follow the order of operations.
[cALL] Computing the first multiplication, we have 3 x 5 = 15.

[SEP] The first multiplication equals 15. [RETURN]

@ - C [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

. [cALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
"{__- [CALL] Computing the second multiplication, we have 2 x 4 = 8.

[SEP] The second multiplication equals 8. [RETURN]

@ . | ... [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
= | The second multiplication equals 8.

. [cALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
The second multiplication equals 8. Now we should add them: 15 + 8 = 23.

[SEP] The answer is 23. [RETURN]

s

<Z| . C The answer is 23.

,‘/‘__: C The answer is 23. [EOS]

A A) WA A W

19/29

Training Next-Token Generator for PENCIL

Objective function is slightly different from CoT

» Setting:
« x € 2* : a prompt string, whose entries are elements of vocabulary X
« y=CoT(x) € X* : the full chain of thought (i.e., no reduction) (not including x)
« py(- | context) : a parametrized next-token generator; a distribution over vocabulary X
e ¢p: X* — X* :remaining string after PENCIL reduction (thus, | ¢(c)| < |c])

« N\ CoT Loss: L r(x) = 25>1 — log py (Vi l X912) (usual loss function for causal next-token generator)

« N PENCIL Loss: Lpgner (¥) = Zm —logpy (3,1 pey1-1))

* Equivalently, at every generation step, we only compute the loss for all intermediate tokens generated
starting from the most recent reduction step.

20/29

Space-Efficient Universality of PENCIL

PENCIL with Transformer simulates Turing machine space-efficiently

Theorem 5.1 (Main, Informal). For any deterministic (i.e., single-tape) Turing machine TM, there exists a
fixed finite-size Transformer* satisfying that:

For any input, on which the computation of TM uses 7 time steps and S space, the transformer using
PENCIL computes the same output with O(T") generated tokens and using maximal context length of O(S).

21/29

Space-Efficient Universality of PENCIL

PENCIL with Transformer simulates Turing machine space-efficiently

Theorem 5.1 (Main, Informal). For any deterministic (i.e., single-tape) Turing machine TM, there exists a
fixed finite-size Transformer* satisfying that:

For any input, on which the computation of TM uses 7 time steps and S space, the transformer using
PENCIL computes the same output with O(T") generated tokens and using maximal context length of O(S).

* Remark on time/space complexity.
+ Scanbe <« T: recall that NP C PSPACE.

« NP: tasks verifiable (given a solution) by a deterministic Turing machine using polynomial time.

Solving an NP task may take exponentially growing time (probably inevitably, unless P = NP).

« PSPACE: tasks solvable by a deterministic (single-tape) Turing machine using polynomial space.

. . CoT \ PENCIL
« Comparison with CoT. Sl
Tokens =~ Runtime of TM =~ Runtime of TM
Generated
Maximal . .
Context Length =~ Runtime of TM ~ Space complexity of TM

22/29

Space-Efficient Universality of PENCIL

PENCIL with Transformer simulates Turing machine space-efficiently

Corollary 5.2. Assume the max context length is limited to the polynomial scale of the input prompt length.
Then, Transformers with PENCIL can solve all problems in PSPACE.

However, Standard CoT with ANY poly-time next-token generator (including Transformer) can only solve P.

/ PENCIL X + Causal Transformer \

A N

a CoT(poly) \ (+ Causal Transformer)\

/

NC! P 3
J

23/29

= PSPACy--

-

Proof in a Nutshell

Lemma 5.5.
Any TM can be represented

as a pair of ARM + SF Proposition 5.6.

PENCIL can simulate ARM + SF

exactly preserving the

time/space complexity. using O(T) steps and O(S)

sequence length.

AutoRegressive
Machine
+ State Function

Turing Machine ———>

PENCIL
with a good next-

token generator
FASP Language 9

Constant-size (Full-Access
Transformers Sequence
Processing)

Appendix E.

PENCILs “good NTG” can
be programmed with FASP.

Theorem C.2

Function class correspondence:
FASP < Transformers

24/29

Experiment: SAT & QBF

Problems with Boolean Formula

* SAT (Boolean formula SATisfiability problem)

» “Decide whether a formula gb(xl, - ,xn) in 1 boolean variables is satisfiable, i.e., there
exists an instance {x;}_, € {True, False}" so that ¢(x{, ..., x,) is True.”

* This task is NP-complete:
NP because a satisfiable formula can be verified in a linear time.

 Complete: Every NP task can be reduced to SAT in polynomial time (Cook-Levin Theorem).

25/29

Experiment: SAT & QBF

Problems with Boolean Formula

* TQBF (True Quantified Boolean Formula problem), or just QBF

« “Decide whether a formula with quantifiers (V, 3) is True.”
 For example: “Is 3x; VX, Jx; 1 (X V x5 V x3) A (7x; V X, V 7x3) True?”

« SAT is a special case choosing every quantifier as existential (3).

* This task is PSPACE-complete:

* May not be NP: even though we have a True QBEF, it’s difficult to verify without checking
almost all possible combinations of variables.

 Complete: Every PSPACE task can be reduced to QBF in polynomial time.

26/29

Experiment: SAT & QBF

10
S
ag 8
] 6 ®
E5. 41
A 2 ® CoT > 95% @ PENCIL = 95% |
P CoT < 95% x PENCIL < 95%
0
2.5 5.0 7.5 10.0
Inference Time (s)
(a) SAT
10 .
S
ag 8
= 6
£E, 2
a8) ® CoT = 95% ® PENCIL = 95% |
P CoT < 95% x PENCIL < 95%
0
0 10 20 30 40
Inference Time (s)
(b) QBF

Figure 5. SAT & QBF, Comparison
of maximally solvable problem size
(with = 95% accuracy) given
different inference time budgets.

Problems with Boolean Formula

» GPT2-scale, small Transformers (6-layer, 10.63M param) with RoPE, context len 2048

>

“Problem size n” = number of boolean variables in a given formula

Accuracy (%)

Training Loss Trace Rate (%)

100 W g IW g NW glOOI W——v—-
301 100.0 2 2 [lon.od 5 0 100.0 % 201000 ‘
)) ‘
| 1000 g 60| g 100.0 £ 6ol | Ny 100.0 g 6 100.0
g 40 g 40 8 40
< 20 < 2 < 2
—_ —_ —_ - =
G 100 \WW 3 S 100
S S S
E’ 80 i E’ ; 80 |WMW
5 60 160.0 8 S 60 1000
& ol & &) ‘
3 100.0 2 g 401 A
é 20 E 8 20 /f“ 100.0|
= = = o0
v w w
1773 17 17
g 8 s ‘
3 3 S
1] on =1}
g g g
B ol ——oouu | 8 B ool— |
& & e

0
00 05 10 15 20 25
Training FLOPs « 1el0

(a) QBF n =3

0
00 02 04 06 08 1.0

Training FLOPs « lell

(b) QBFn =4

0
00 06 12 18 24 3.0

Training FLOPs « lell

(c) QBFn =5

0
0.00 0.25 0.50 0.75 1.00 1.25 1.5
Training FLOPs « lel2

(d) QBFn =6

Figure 6. Comparison of convergence speed for training on the QBF problem (with size ranges
from 3 to 6). Circles and vertical lines indicate the first time each method reaches optimal
performance. The x-axis is the FLOPs budget for self-attention. ‘“Trace rate (%)’ refers to the ratio of
reasoning steps matching the ground truth.

27/29

Some Questions / Limitations

* For an existing LLM, PENCIL requires additional training
« LM should learn when to generate the special tokens ([CALL], [SEP], [RETURN])

» Does it only require learning a small number of additional parameters (e.g., token embedding vectors, linear
readout) while freezing the original model parameters?

» Contrarily, CoT can be applied by prompting a well-trained LLM without further training

» Can PENCIL training be parallelized? (Not so clear; the code is not revealed yet: hitps://github.com/chro6195/PENCIL)

* Due to the reduction rule, PENCIL training should be done chunk-by-chunk, with multiple forward passes;
seems challenging to parallelize the training fully.

» Training dataset can be constructed with a tree structure: Can we implement an efficient mini-batching of
the tree-structured dataset?

* PENCIL works like depth-first search (DFS) for tree traversing!
» Can other tree search methods be applied with CoT?

» Can PENCIL do MCTS? Long-term Planning? Branch-and-Bound? ... Any other Applications?

28/29

https://github.com/chr26195/PENCIL

References

« Kojima et al., Large Language Models are Zero-Shot Reasoners. NeurlPS 2022.

* Merrill and Sabharwal, The Parallelism Tradeoff: Limitations of Log-Precision Transformers.
TACL 2023.

e Merrill and Sabharwal, The Expressive Power of Transformers with Chain of Thought. ICLR
2024.

* Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language
Models. 2021. arXiv:i2112.00114

* Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. NeurlPS
2022.

* Yang et al., PENCIL: Long Thoughts with Short Memory. 2025. arXiv:2503.14337

29/29

