
Presented by Hanseul Cho

PENCIL✏:
Long Thoughts with Short Memory
Chenxiao Yang, Nathan Srebro, David McAllester, and Zhiyuan Li

OptiML Group Meeting
April 4th, 2025

 / 292

Overview

Pen ✒ Pencil ✏

 / 293

Overview

Pen ✒ Pencil ✏

NOT erasable: Write-Only Erasable: Write ↔ Erase

Once written, intermediate steps
must remain in the scratchpad

Unless needed, intermediate steps
can be erased from the scratchpad

Space-inefficient Space-efficient

Error-prone due to wrong scratches Can correct wrong scratches

Chain-of-Thought (CoT) ✒ PENCIL ✏

NOT erasable: Write-Only Erasable: Write ↔ Erase

Once written, intermediate steps
must remain in the scratchpad

Unless needed, intermediate steps
can be erased from the scratchpad

Space-inefficient Space-efficient

Error-prone due to wrong scratches Can correct wrong scratches

 / 294

Overview
Today’s

Presentation

Chain-of-Thought (CoT) ✒ [Wei et al., 2022]
≒ Scratchpad [Nye et al., 2021]

• Longer thoughts for better reasoning at inference time.

• Originally a prompting technique for LLMs [Wei et al., 2022].

• GPT3’s Zero-shot CoT is also popular (“Let’s think step by step.” [Kojima et al., 2022])

• Most Recent LLMs are intentionally designed to do CoT (e.g., DeepSeek-R1, OpenAI o1 & o3)

 / 295

Chain-of-Thought (CoT) ✒ [Wei et al., 2022]
≒ Scratchpad [Nye et al., 2021]

• Longer thoughts for better reasoning at inference time.

• Originally a prompting technique for LLMs [Wei et al., 2022].

• GPT3’s Zero-shot CoT is also popular (“Let’s think step by step.” [Kojima et al., 2022])

• Most Recent LLMs are intentionally designed to do CoT (e.g., DeepSeek-R1, OpenAI o1 & o3)

• Theoretically better expressivity of constant-sized, average-hardmax, […] Transformers

• Vanilla Transformer (no CoT): can’t solve tasks outside of [Merril & Sabharwal, 2023]

• Transformer with polynomial-length CoT: can solve tasks in [Merril & Sabharwal, 2024]

𝖳𝖢0

𝖯

* . Strict (in)equalities are all open-problem.𝖳𝖢0 ⊂ 𝖭𝖢1 ⊂ 𝖯 ⊂ 𝖭𝖯 ⊂ 𝖯𝖲𝖯𝖠𝖢𝖤
 / 296

Chain-of-Thought (CoT) ✒ [Wei et al., 2022]
What’s bad about it? (Specifically for Transformers)

• Because of its write-only limitation, it often suffers from:

• 😵💫 Excessive memory resources

• The attention layer can take quadratically growing memory in context length

• 😵💫 Excessive computation (in FLOPs)

• Each next-token prediction step can take linearly growing computation in context length

• 😵💫 Long-context reasoning is complex in general

• Reasoning performance tends to become worse as the context gets longer

 / 297

Method: PENCIL✏
Pencil ENables Context-efficient Inference and Learning

• Erasable CoT: Next-Token Generator (=pencil) + Reduction Rule (=eraser)

• Add 3 special tokens to vocabulary: [CALL], [SEP], [RETURN]

• Reduction Rule: C [CALL] T [SEP] A [RETURN] C A
• C for “Context” (Upcoming subproblems)

• T for “Thoughts” (Intermediate steps; NOT useful for future reasoning; to be deleted)

• A for “Answer” (Answer of a subproblem; useful for future reasoning)

• To allow unique parsing, T can’t have [CALL]; A can’t have [SEP] & [RETURN].

⇒

 / 298

Method: PENCIL✏
Pencil ENables Context-efficient Inference and Learning

• Erasable CoT: Next-Token Generator (=pencil) + Reduction Rule (=eraser)

• Intuitively, the PENCIL reduction rule works GREEDILY:

• Whenever LM generates [RETURN];

1. Find the most recent [SEP];

2. Find the most recent [CALL];

3. Apply the reduction rule C [CALL] T [SEP] A [RETURN] C A

• Otherwise, keep repeating the next-token generation.

• If LM generates [EOS], then halt the inference.

⇒

 / 299

Example: Arithmetic with CoT✒
Prompt: Compute 3 x 5 + 2 x 4. [EndOfPrompt]

• Response:

• There are two multiplications and one addition.

• Let’s follow the order of operations.

 / 2910

3 5 2 4

x x

+

Example: Arithmetic with CoT✒
Prompt: Compute 3 x 5 + 2 x 4. [EndOfPrompt]

• Response:

• There are two multiplications and one addition.

• Let’s follow the order of operations.

• Computing the first multiplication, we have 3 x 5 = 15.

• The first multiplication equals 15.

 / 2911

3 5 2 4

x x

+
15

Example: Arithmetic with CoT✒
Prompt: Compute 3 x 5 + 2 x 4. [EndOfPrompt]

• Response:

• There are two multiplications and one addition.

• Let’s follow the order of operations.

• Computing the first multiplication, we have 3 x 5 = 15.

• The first multiplication equals 15.

• Computing the second multiplication, we have 2 x 4 = 8.

• The second multiplication equals 8.

 / 2912

3 5 2 4

x x

+
15 8

Example: Arithmetic with CoT✒
Prompt: Compute 3 x 5 + 2 x 4. [EndOfPrompt]

• Response:

• There are two multiplications and one addition.

• Let’s follow the order of operations.

• Computing the first multiplication, we have 3 x 5 = 15.

• The first multiplication equals 15.

• Computing the second multiplication, we have 2 x 4 = 8.

• The second multiplication equals 8.

• Now we should add them: 15 + 8 = 23.

 / 2913

3 5 2 4

x x

+
15 8

23

Example: Arithmetic with CoT✒
Prompt: Compute 3 x 5 + 2 x 4. [EndOfPrompt]

• Response:

• There are two multiplications and one addition.

• Let’s follow the order of operations.

• Computing the first multiplication, we have 3 x 5 = 15.

• The first multiplication equals 15.

• Computing the second multiplication, we have 2 x 4 = 8.

• The second multiplication equals 8.

• Now we should add them: 15 + 8 = 23.

• The answer is 23. [EOS]

 / 2914

3 5 2 4

x x

+
15 8

23

Example: Arithmetic with PENCIL✏
Prompt: Compute 3 x 5 + 2 x 4. [EndOfPrompt]

Yellow: Newly generated tokens

Underlined: Tokens to be
deleted by the reduction rule

 / 2915

3 5 2 4

x x

+

Example: Arithmetic with PENCIL✏
Prompt: Compute 3 x 5 + 2 x 4. [EndOfPrompt]

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations.

[CALL] Computing the first multiplication, we have 3 x 5 = 15.

[SEP] The first multiplication equals 15. [RETURN]

✍:

⌫: … [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

 / 2916

2 4

15 x

+

Yellow: Newly generated tokens

Underlined: Tokens to be
deleted by the reduction rule

… : Prompt (omitted)

✍ : Generation stage

⌫: Reduction stage

Example: Arithmetic with PENCIL✏
Prompt: Compute 3 x 5 + 2 x 4. [EndOfPrompt]

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations.

[CALL] Computing the first multiplication, we have 3 x 5 = 15.

[SEP] The first multiplication equals 15. [RETURN]

✍:

⌫: … [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

[CALL] Computing the second multiplication, we have 2 x 4 = 8.

[SEP] The second multiplication equals 8. [RETURN]

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
The second multiplication equals 8.

✍:

⌫:

 / 2917

15 8

+

Yellow: Newly generated tokens

Underlined: Tokens to be
deleted by the reduction rule

… : Prompt (omitted)

✍ : Generation stage

⌫: Reduction stage

Example: Arithmetic with PENCIL✏
Prompt: Compute 3 x 5 + 2 x 4. [EndOfPrompt]

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations.

[CALL] Computing the first multiplication, we have 3 x 5 = 15.

[SEP] The first multiplication equals 15. [RETURN]

✍:

⌫: … [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

[CALL] Computing the second multiplication, we have 2 x 4 = 8.

[SEP] The second multiplication equals 8. [RETURN]

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
The second multiplication equals 8.

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
The second multiplication equals 8. Now we should add them: 15 + 8 = 23.

[SEP] The answer is 23. [RETURN]

… The answer is 23.

✍:

⌫:

✍:

⌫:

 / 2918

23

Yellow: Newly generated tokens

Underlined: Tokens to be
deleted by the reduction rule

… : Prompt (omitted)

✍ : Generation stage

⌫: Reduction stage

Example: Arithmetic with PENCIL✏
Prompt: Compute 3 x 5 + 2 x 4. [EndOfPrompt]

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations.

[CALL] Computing the first multiplication, we have 3 x 5 = 15.

[SEP] The first multiplication equals 15. [RETURN]

✍:

⌫: … [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.

[CALL] Computing the second multiplication, we have 2 x 4 = 8.

[SEP] The second multiplication equals 8. [RETURN]

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
The second multiplication equals 8.

… [CALL] There are two multiplications and one addition. Let’s follow the order of operations. The first multiplication equals 15.
The second multiplication equals 8. Now we should add them: 15 + 8 = 23.

[SEP] The answer is 23. [RETURN]

… The answer is 23.

✍:

⌫:

✍:

⌫:
… The answer is 23. [EOS]✍:

 / 2919

23

Yellow: Newly generated tokens

Underlined: Tokens to be
deleted by the reduction rule

… : Prompt (omitted)

✍ : Generation stage

⌫: Reduction stage

Training Next-Token Generator for PENCIL
Objective function is slightly different from CoT

• Setting:

• : a prompt string, whose entries are elements of vocabulary

• : the full chain of thought (i.e., no reduction) (not including)

• : a parametrized next-token generator; a distribution over vocabulary

• : remaining string after PENCIL reduction (thus,)

• ✒ CoT Loss: (usual loss function for causal next-token generator)

• ✏ PENCIL Loss:

• Equivalently, at every generation step, we only compute the loss for all intermediate tokens generated
starting from the most recent reduction step.

x ∈ Σ* Σ
y = 𝖢𝗈𝖳(x) ∈ Σ* x
pθ(⋅ |context) Σ
ϕ : Σ* → Σ* |ϕ(c) | ≤ |c |

L𝖢𝗈𝖳(x) = ∑i≥1
− log pθ (yi ∣ x, y1:i−1)

L𝖯𝖤𝖭𝖢𝖨𝖫(x) = ∑i≥1
− log pθ (yi ∣ ϕ(x, y1:i−1))

 / 2920

Space-Efficient Universality of PENCIL
PENCIL with Transformer simulates Turing machine space-efficiently

Theorem 5.1 (Main, Informal). For any deterministic (i.e., single-tape) Turing machine , there exists a
fixed finite-size Transformer* satisfying that:

For any input, on which the computation of uses time steps and space, the transformer using
PENCIL computes the same output with generated tokens and using maximal context length of .

“Transformer’s Architecture Choices”:
• Average-hard causal attention (using hard-max instead of softmax; no tie-breaking, but assigning

uniform attention weights to every arg-max)

• Position Embedding:

• Gated ReLU activation in FFNN, No LayerNorm…

𝖳𝖬

𝖳𝖬 T S
O(T) O(S)

n ↦ n

 / 2921

Space-Efficient Universality of PENCIL
PENCIL with Transformer simulates Turing machine space-efficiently

Theorem 5.1 (Main, Informal). For any deterministic (i.e., single-tape) Turing machine , there exists a
fixed finite-size Transformer* satisfying that:

For any input, on which the computation of uses time steps and space, the transformer using
PENCIL computes the same output with generated tokens and using maximal context length of .

• Remark on time/space complexity.

• can be : recall that .

• : tasks verifiable (given a solution) by a deterministic Turing machine using polynomial time.

• Solving an NP task may take exponentially growing time (probably inevitably, unless).

• : tasks solvable by a deterministic (single-tape) Turing machine using polynomial space.

• Comparison with CoT.

𝖳𝖬

𝖳𝖬 T S
O(T) O(S)

S ≪ T 𝖭𝖯 ⊂ 𝖯𝖲𝖯𝖠𝖢𝖤
𝖭𝖯

𝖯 = 𝖭𝖯
𝖯𝖲𝖯𝖠𝖢𝖤

CoT ✒ PENCIL ✏

Tokens
Generated ≈ Runtime of TM ≈ Runtime of TM

Maximal
Context Length ≈ Runtime of TM ≈ Space complexity of TM

 / 2922

Space-Efficient Universality of PENCIL
PENCIL with Transformer simulates Turing machine space-efficiently

Corollary 5.2. Assume the max context length is limited to the polynomial scale of the input prompt length.
Then, Transformers with PENCIL can solve all problems in .

However, Standard CoT with ANY poly-time next-token generator (including Transformer) can only solve .

𝖯𝖲𝖯𝖠𝖢𝖤

𝖯

 / 2923

𝖯𝖲𝖯𝖠𝖢𝖤𝖭𝖯𝖯𝖭𝖢1𝖳𝖢0

Vanilla Causal
Transformer

PENCIL ✏ + Causal Transformer

CoT(poly) ✒ (+ Causal Transformer)

?=?=?=?= ⋯

Proof in a Nutshell

Turing Machine
AutoRegressive

Machine
+ State Function

FASP Language
(Full-Access
Sequence

Processing)

Constant-size
Transformers

Lemma 5.5.
Any TM can be represented
as a pair of ARM + SF
exactly preserving the
time/space complexity.

PENCIL
with a good next-
token generator

Proposition 5.6.
PENCIL can simulate ARM + SF
using steps and
sequence length.

O(T) O(S)

Appendix E.
PENCIL’s “good NTG” can
be programmed with FASP.Theorem C.2

Function class correspondence:
FASP Transformers⇔

 / 2924

Experiment: SAT & QBF
Problems with Boolean Formula

• SAT (Boolean formula SATisfiability problem)

• “Decide whether a formula in boolean variables is satisfiable, i.e., there
exists an instance so that is True.”

• This task is NP-complete:

• NP because a satisfiable formula can be verified in a linear time.

• Complete: Every NP task can be reduced to SAT in polynomial time (Cook-Levin Theorem).

ϕ(x1, . . . , xn) n
{xi}n

i=1 ∈ {𝖳𝗋𝗎𝖾, 𝖥𝖺𝗅𝗌𝖾}n ϕ(x1, . . . , xn)

 / 2925

• TQBF (True Quantified Boolean Formula problem), or just QBF

• “Decide whether a formula with quantifiers () is True.”

• For example: “Is True?”

• SAT is a special case choosing every quantifier as existential ().

• This task is PSPACE-complete: (recall that)
• May not be NP: even though we have a True QBF, it’s difficult to verify without checking

almost all possible combinations of variables.

• Complete: Every PSPACE task can be reduced to QBF in polynomial time.

∀, ∃
∃x1 ∀x2 ∃x3 : (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

∃

𝖭𝖯 ⊂ 𝖯𝖲𝖯𝖠𝖢𝖤

 / 2926

Experiment: SAT & QBF
Problems with Boolean Formula

 / 2927

Experiment: SAT & QBF
Problems with Boolean Formula

Figure 5. SAT & QBF, Comparison
of maximally solvable problem size
(with ≥ 95% accuracy) given
different inference time budgets.

Figure 6. Comparison of convergence speed for training on the QBF problem (with size ranges
from 3 to 6). Circles and vertical lines indicate the first time each method reaches optimal
performance. The x-axis is the FLOPs budget for self-attention. ‘Trace rate (%)’ refers to the ratio of
reasoning steps matching the ground truth.

‣ GPT2-scale, small Transformers (6-layer, 10.63M param) with RoPE, context len 2048

‣ “Problem size ” = number of boolean variables in a given formulan

Some Questions / Limitations
• For an existing LLM, PENCIL requires additional training

• LM should learn when to generate the special tokens ([CALL], [SEP], [RETURN])

• Does it only require learning a small number of additional parameters (e.g., token embedding vectors, linear
readout) while freezing the original model parameters?

• Contrarily, CoT can be applied by prompting a well-trained LLM without further training

• Can PENCIL training be parallelized? (Not so clear; the code is not revealed yet: https://github.com/chr26195/PENCIL)

• Due to the reduction rule, PENCIL training should be done chunk-by-chunk, with multiple forward passes;
seems challenging to parallelize the training fully.

• Training dataset can be constructed with a tree structure: Can we implement an efficient mini-batching of
the tree-structured dataset?

• PENCIL works like depth-first search (DFS) for tree traversing!

• Can other tree search methods be applied with CoT?

• Can PENCIL do MCTS? Long-term Planning? Branch-and-Bound? … Any other Applications?

 / 2928

https://github.com/chr26195/PENCIL

References
• Kojima et al., Large Language Models are Zero-Shot Reasoners. NeurIPS 2022.

• Merrill and Sabharwal, The Parallelism Tradeoff: Limitations of Log-Precision Transformers.
TACL 2023.

• Merrill and Sabharwal, The Expressive Power of Transformers with Chain of Thought. ICLR
2024. 	

• Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language
Models. 2021. arXiv:2112.00114

• Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. NeurIPS
2022.

• Yang et al., PENCIL: Long Thoughts with Short Memory. 2025. arXiv:2503.14337

 / 2929

