Deep Model-Based Optimization of Jamming Effectiveness under Aircraft AESA Radar Operational Environment

๐Ÿ‘ฅ Hanseul Cho, Baekrok Shin, Chaewon Moon, Sang-Geun Hong, U-Ju Byeon, Jin-Yong Sung, and Chulhee Yun

๐Ÿ—“     ๐Ÿ“ฐ J-KICS    

Korean Title

ํ•ญ๊ณต๊ธฐ AESA ๋ ˆ์ด๋‹ค ์šด์šฉ ํ™˜๊ฒฝ์— ํšจ๊ณผ์ ์ธ ์žฌ๋จธ ํŒŒ๋ผ๋ฏธํ„ฐ ํƒ์ƒ‰์„ ์œ„ํ•œ ์‹ฌ์ธต ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•

Abstract (KOR/ENG)

๋ณธ ์—ฐ๊ตฌ๋Š” ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง์„ ์ด์šฉํ•œ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์˜ ์ผ์ข…์ธ RoMA๋ฅผ ํ™œ์šฉํ•ด ํ•ญ๊ณต๊ธฐ AESA ๋ ˆ์ด๋‹ค ์šด์šฉ ํ™˜๊ฒฝ์— ํšจ๊ณผ์ ์ธ ์žฌ๋จธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Š” ๋ ˆ์ด๋‹คยท์žฌ๋จธ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ ์žฌ๋ฐ ํšจ๊ณผ๋„ ์‚ฌ์ด ํ•จ์ˆ˜๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ๊ทผ์‚ฌํ•˜๋Š” ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ์‚ฌ์ „ ํ•™์Šตํ•˜๋Š” ๋‹จ๊ณ„์™€ ์ด ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด ์ตœ์  ์žฌ๋จธ ํŒŒ๋ผ๋ฏธํ„ฐ ํ›„๋ณด๋ฅผ ์ฐพ๋Š” ๋‹จ๊ณ„๋กœ ๋‚˜๋‰œ๋‹ค. ๋ ˆ์ด๋‹คยท์žฌ๋จธ ์กฐ์šฐ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์–ป๋Š” ์ผ๋ จ์˜ ์ธก์ • ๊ฒฐ๊ณผ๋ฅผ ๋‹จ์ผ ์ง€ํ‘œ๋กœ ๋‚˜ํƒ€๋‚ด๊ณ ์ž ์ธก์ • ์‹คํŒจ์œจ๊ณผ ํ‰๊ท  ๊ฑฐ๋ฆฌ ์˜ค์ฐจ๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ์žฌ๋ฐ ํšจ๊ณผ๋„๋ฅผ ์ •์˜ํ•˜๊ณ , ์šด์šฉ ํ™˜๊ฒฝ ๋ชจ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋ฐ˜๋ณต ์‹œํ–‰ํ•ด ํŒŒ๋ผ๋ฏธํ„ฐ ์กฐํ•ฉ์— ๋”ฐ๋ฅธ ์žฌ๋ฐ ํšจ๊ณผ๋„ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๊ตฌ์ถ•ํ•œ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๋ฌด์ž‘์œ„ ์ถ”์ถœ ๊ธฐ๋ฒ• ๋Œ€๋น„ ํ‰๊ท  41.2%, ์ตœ๋Œ€ 80.3%์˜ ์žฌ๋ฐ ํšจ๊ณผ๋„ ํ–ฅ์ƒ๋ฅ ์„ ๋ณด์˜€์œผ๋ฉฐ, ๋‹ค๋ฅธ ๊ธฐ์ค€ ๋ชจ๋ธ๋“ค๊ณผ์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๋ณธ ๋ฐฉ๋ฒ•์˜ ์šฐ์ˆ˜์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.

We propose a deep learning algorithm to find effective jamming parameters in the aircraft AESA radar operational environment, based on a model-based optimization technique called RoMA. To represent a series of measurements obtained under the operational environment as a single number, we design jamming effectiveness by combining ranging failure rate and average range error. Next, we collect a jamming effectiveness dataset for various radar/jammer parameter combinations by repeatedly running the simulation. Our algorithm consists of two stages: the first is to pre-train a neural network that robustly approximates the function from radar/jammer parameters to jamming effectiveness; the second is to estimate the optimal jamming parameters by exploiting our model. As a result, the proposed method improved jamming effectiveness by an average of 41.2% and up to 80.3% compared to random search, and consistently outperformed other baseline models.

Keywords

AESA ๋ ˆ์ด๋‹ค, ์žฌ๋ฐ ํšจ๊ณผ๋„, ๋ชจ๋ธ๋ง๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™”, ์‹ ๊ฒฝ๋ง

AESA Radar, Jamming Effectiveness, Modeling and Simulation, Model-Based Optimization, Neural Network